Spaces:
Running
Running
Create pdf_bot.py
Browse files- pdf_bot.py +36 -0
pdf_bot.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
from langchain.document_loaders import PyPDFLoader
|
4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
+
from langchain.vectorstores import FAISS
|
7 |
+
from langchain.chains import RetrievalQA
|
8 |
+
from langchain_community.llms import ChatGroq
|
9 |
+
|
10 |
+
load_dotenv()
|
11 |
+
groq_api_key = os.getenv("GROQ_API_KEY")
|
12 |
+
|
13 |
+
# Load PDF and prepare QA chain
|
14 |
+
def create_qa_chain_from_pdf(pdf_path):
|
15 |
+
loader = PyPDFLoader(pdf_path)
|
16 |
+
documents = loader.load()
|
17 |
+
|
18 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
19 |
+
texts = splitter.split_documents(documents)
|
20 |
+
|
21 |
+
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-m3")
|
22 |
+
vectorstore = FAISS.from_documents(texts, embeddings)
|
23 |
+
|
24 |
+
llm = ChatGroq(
|
25 |
+
model="llama3-8b-8192",
|
26 |
+
temperature=0.3,
|
27 |
+
api_key=groq_api_key,
|
28 |
+
)
|
29 |
+
|
30 |
+
qa_chain = RetrievalQA.from_chain_type(
|
31 |
+
llm=llm,
|
32 |
+
chain_type="stuff",
|
33 |
+
retriever=vectorstore.as_retriever(search_kwargs={"k": 1}),
|
34 |
+
return_source_documents=True
|
35 |
+
)
|
36 |
+
return qa_chain
|