Spaces:
Build error
Build error
| import os | |
| from dotenv import load_dotenv | |
| from langchain.document_loaders import PyPDFLoader | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain.embeddings import HuggingFaceEmbeddings | |
| from langchain.vectorstores import FAISS | |
| from langchain.chains import RetrievalQA | |
| from langchain_community.llms import ChatGroq | |
| load_dotenv() | |
| groq_api_key = os.getenv("GROQ_API_KEY") | |
| # Load PDF and prepare QA chain | |
| def create_qa_chain_from_pdf(pdf_path): | |
| loader = PyPDFLoader(pdf_path) | |
| documents = loader.load() | |
| splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
| texts = splitter.split_documents(documents) | |
| embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-m3") | |
| vectorstore = FAISS.from_documents(texts, embeddings) | |
| llm = ChatGroq( | |
| model="llama3-8b-8192", | |
| temperature=0.3, | |
| api_key=groq_api_key, | |
| ) | |
| qa_chain = RetrievalQA.from_chain_type( | |
| llm=llm, | |
| chain_type="stuff", | |
| retriever=vectorstore.as_retriever(search_kwargs={"k": 1}), | |
| return_source_documents=True | |
| ) | |
| return qa_chain | |