maeliprof / quiz.py
gardari's picture
Fix wrong error/no error in GEC
3ad2259 verified
raw
history blame
11.9 kB
from datasets import load_dataset
from dataclasses import dataclass
from typing import Any, Dict, List, Optional
import random
import matplotlib.pyplot as plt
from score import calculate_gpt4o_scores, BENCHMARK_SCORES
# Define benchmarks
BENCHMARKS = {
"icelandic-winogrande": {
"name": "Winogrande",
"path": "mideind/icelandic-winogrande",
"type": "multiple_choice",
},
"grammatical-error-detection": {
"name": "Málfræðivillur",
"path": "mideind/icelandic-sentences-gec",
"type": "multiple_choice",
},
"icelandic-inflection-all": {
"name": "Fallbeygingar",
"path": "mideind/icelandic-inflection-all-flat",
"type": "free_text",
"blacklisted_noun_phrases": [
"hágæða sprengjutilræði",
"óstöðvandi geðröskun",
"allsber meirihluti",
"geðsjúkt álagsstýrikerfi",
"kynþokkafullt starfsvið",
"lettneskur þræll",
"nígerískt meyjarhaft",
"kynæsandi málvísindamaður",
"kynþokkafullur menntaskólakennari",
"lóðrétt forhúð",
"vandþrædd hvatabuska",
],
},
"icelandic-belebele": {
"name": "Lesskilningur",
"path": "facebook/belebele",
"config_name": "isl_Latn",
"split": "test",
"type": "multiple_choice",
},
"icelandic-arc-challenge": {
"name": "Vísindi",
"path": "mideind/icelandic-arc-challenge",
"type": "multiple_choice",
},
"icelandic-wiki-qa": {
"name": "Íslensk saga og menning",
"path": "mideind/icelandic_wiki_qa",
"type": "free_text",
},
}
DATASETS = {
dataset_name: load_dataset(
BENCHMARKS[dataset_name]["path"],
name=BENCHMARKS[dataset_name].get("config_name"),
split=BENCHMARKS[dataset_name].get("split", "train"),
)
for dataset_name in BENCHMARKS
}
# Dataset specific preprocessing and standardization
def winogrande_preprocessing(sample):
new_sample = {}
new_sample["question"] = (
"Lestu eftirfarandi málsgrein:<p style='margin-left: 20px;'><i>{sentence}</i></p><br>Hvor valkostanna passar betur í eyðuna?".format(
sentence=sample["sentence"].replace("_", "________")
)
)
new_sample["options"] = sample["option1"], sample["option2"]
new_sample["answer"] = (
sample["option1"] if sample["answer"] == "1" else sample["option2"]
)
new_sample["instruction"] = "Valkostir"
return new_sample
def icelandic_sentence_gec_preprocessing(sample):
new_sample = {}
new_sample["question"] = (
f"Inniheldur eftirfarandi málsgrein villu?<p style='margin-left: 25px;'><i>{sample['sentence']}</i></p>"
)
new_sample["options"] = "Villa", "Engin villa"
new_sample["answer"] = "Villa" if sample["correct"] == "false" else "Engin villa"
new_sample["instruction"] = "Valkostir"
return new_sample
def inflection_all_preprocessing(sample):
new_sample = {}
case_map = {
"nf": "nefnifalli",
"þf": "þolfalli",
"þgf": "þágufalli",
"ef": "eignarfalli",
}
plurality_map = {"et": "eintölu", "ft": "fleirtölu"}
new_sample["question"] = (
f"Hvernig beygist <i>„{sample['noun_phrase']}“</i> í {case_map[sample['case']]} {plurality_map[sample['plurality']]}?"
)
new_sample["answer"] = sample["inflection"]
new_sample["instruction"] = "Skrifaðu réttu beyginguna."
return new_sample
def belebele_preprocessing(sample):
new_sample = {}
new_sample["question"] = (
f'Lestu eftirfarandi texta:<p style="margin-left: 25px;"><i>{sample["flores_passage"]}</i></p>\n\n{sample["question"]}'
)
new_sample["options"] = [
sample["mc_answer1"],
sample["mc_answer2"],
sample["mc_answer3"],
sample["mc_answer4"],
]
correct_idx = int(sample["correct_answer_num"]) - 1
new_sample["answer"] = new_sample["options"][correct_idx]
new_sample["instruction"] = "Veldu réttasta svarið."
return new_sample
def arc_challenge_preprocessing(sample):
new_sample = {}
new_sample["question"] = sample["question"]
new_sample["options"] = sample["choices"]["text"]
correct_idx = sample["choices"]["label"].index(sample["answerKey"])
new_sample["answer"] = sample["choices"]["text"][correct_idx]
new_sample["instruction"] = "Veldu réttasta svarið."
return new_sample
def wikipedia_preprocessing(sample):
new_sample = {}
new_sample["question"] = sample["query"]
new_sample["answer"] = sample["answer"]
new_sample["instruction"] = "Skrifaðu svarið þitt að neðan."
return new_sample
@dataclass
class QuizState:
benchmark_name: str
samples: List[Dict[str, Any]]
current_question: int
user_answers: List[Optional[str]]
correct_answers: List[str]
quiz_completed: bool
user_scores: List[Optional[float]]
@dataclass
class QuestionData:
question_num: str
question: str
options: Optional[List[str]]
answer: Optional[str]
next_button_text: str
previous_button_visibility: bool
instruction: str = ""
class BenchmarkQuiz:
def __init__(self):
self.state = None
def start_quiz(self, benchmark_name: str) -> QuizState:
samples = self.load_benchmark(benchmark_name)
correct_answers = [sample["answer"] for sample in samples]
self.state = QuizState(
benchmark_name=benchmark_name,
samples=samples,
current_question=0,
user_answers=[None] * len(samples),
correct_answers=correct_answers,
quiz_completed=False,
user_scores=[None] * len(samples),
)
return self.state
def load_benchmark(self, benchmark_name: str) -> List[Dict[str, Any]]:
dataset = DATASETS[benchmark_name]
random_indices = random.sample(range(len(dataset)), 5)
samples = dataset.select(random_indices)
if benchmark_name == "icelandic-winogrande":
samples = [winogrande_preprocessing(sample) for sample in samples]
elif benchmark_name == "grammatical-error-detection":
samples = [
icelandic_sentence_gec_preprocessing(sample) for sample in samples
]
elif benchmark_name == "icelandic-inflection-all":
while any(
sample["noun_phrase"] in BENCHMARKS[benchmark_name]["blacklisted_noun_phrases"]
for sample in samples
):
random_indices = random.sample(range(len(dataset)), 5)
samples = dataset.select(random_indices)
samples = [inflection_all_preprocessing(sample) for sample in samples]
elif benchmark_name == "icelandic-belebele":
samples = [belebele_preprocessing(sample) for sample in samples]
elif benchmark_name == "icelandic-arc-challenge":
samples = [arc_challenge_preprocessing(sample) for sample in samples]
elif benchmark_name == "icelandic-wiki-qa":
samples = [wikipedia_preprocessing(sample) for sample in samples]
return samples
def update_question(self) -> QuestionData:
"""
Update the question data based on the current state.
Is called when the user navigates to a new question.
"""
current_question = self.state.current_question
sample = self.state.samples[current_question]
question_num = (
f"### Spurning {current_question + 1} af {len(self.state.samples)}"
)
question = sample["question"]
options = sample.get("options")
answer = self.state.user_answers[current_question]
next_button_text = (
"Klára" if current_question == len(self.state.samples) - 1 else "Næsta"
)
previous_button_visibility = current_question > 0
instruction = sample.get("instruction", "")
return QuestionData(
question_num=question_num,
question=question,
options=options,
answer=answer,
next_button_text=next_button_text,
previous_button_visibility=previous_button_visibility,
instruction=instruction,
)
def next_question(self, answer: str) -> Dict[str, Any]:
"""
Update the state with the user's answer to the current question.
If the quiz is not completed, return the next question data.
If the quiz is completed, return the score plot.
Is called when the user submits an answer.
"""
self.state.user_answers[self.state.current_question] = answer
if self.state.current_question < len(self.state.samples) - 1:
self.state.current_question += 1
return {"completed": False, "question_data": self.update_question()}
else:
self.state.quiz_completed = True
user_scores = self.calculate_scores()
self.state.user_scores = user_scores
plot = self.plot_score(user_scores)
return {
"completed": True,
"plot": plot,
"results_data": self.get_results_data(),
}
def previous_question(self) -> QuestionData:
if self.state.current_question > 0:
self.state.current_question -= 1
return self.update_question()
def calculate_scores(self) -> list[float]:
if self.state.benchmark_name == "icelandic-wiki-qa":
queries = [sample["question"] for sample in self.state.samples]
return calculate_gpt4o_scores(
queries, self.state.user_answers, self.state.correct_answers
)
scores = [
float(user_answer == correct_answer)
for user_answer, correct_answer in zip(
self.state.user_answers, self.state.correct_answers
)
]
return scores
def plot_score(self, user_scores: List[float]):
user_score = sum(user_scores) / len(user_scores)
scores = {**BENCHMARK_SCORES[self.state.benchmark_name], "Þú": 100 * user_score}
# Sort by score
scores = dict(sorted(scores.items(), key=lambda item: item[1]))
# Define colors for user vs models
colors = {name: "tab:blue" for name in scores.keys()}
colors["Þú"] = "tab:green"
fig, ax = plt.subplots(figsize=(10, 6), dpi=250)
ax.spines[["left", "top", "right"]].set_visible(False)
ax.barh(
scores.keys(),
scores.values(),
height=0.6,
color=[colors[name] for name in scores.keys()],
)
ax.set_axisbelow(True)
ax.xaxis.grid(True, linestyle="--", alpha=0.6)
ax.set_title(
f"{BENCHMARKS[self.state.benchmark_name]['name']}: Svona stóðstu þig miðað við mállíkönin",
pad=20,
)
ax.set_xlabel("Stig (%)")
ax.set_xlim(0, 100)
plt.tight_layout()
return fig
def get_results_data(self) -> List[Dict[str, Any]]:
return [
{
"question_num": i + 1,
"question": sample["question"],
"user_answer": user_answer,
"correct_answer": correct_answer,
"options": sample.get("options"),
"instruction": sample.get("instruction", ""),
"points": score,
}
for i, (sample, user_answer, correct_answer, score) in enumerate(
zip(
self.state.samples,
self.state.user_answers,
self.state.correct_answers,
self.state.user_scores,
)
)
]