Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,231 Bytes
0fc5095 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
'''
Adapted from https://github.com/google-research/google-research/tree/master/android_in_the_wild
'''
import jax
import jax.numpy as jnp
import numpy as np
# import action_type as action_type_lib
import enum
class ActionType(enum.IntEnum):
# Placeholders for unused enum values
UNUSED_0 = 0
UNUSED_1 = 1
UNUSED_2 = 2
UNUSED_8 = 8
UNUSED_9 = 9
########### Agent actions ###########
# A type action that sends text to the emulator. Note that this simply sends
# text and does not perform any clicks for element focus or enter presses for
# submitting text.
TYPE = 3
# The dual point action used to represent all gestures.
DUAL_POINT = 4
# These actions differentiate pressing the home and back button from touches.
# They represent explicit presses of back and home performed using ADB.
PRESS_BACK = 5
PRESS_HOME = 6
# An action representing that ADB command for hitting enter was performed.
PRESS_ENTER = 7
########### Episode status actions ###########
# An action used to indicate the desired task has been completed and resets
# the environment. This action should also be used in the case that the task
# has already been completed and there is nothing to do.
# e.g. The task is to turn on the Wi-Fi when it is already on
STATUS_TASK_COMPLETE = 10
# An action used to indicate that desired task is impossible to complete and
# resets the environment. This can be a result of many different things
# including UI changes, Android version differences, etc.
STATUS_TASK_IMPOSSIBLE = 11
_TAP_DISTANCE_THRESHOLD = 0.14 # Fraction of the screen
ANNOTATION_WIDTH_AUGMENT_FRACTION = 1.4
ANNOTATION_HEIGHT_AUGMENT_FRACTION = 1.4
# Interval determining if an action is a tap or a swipe.
_SWIPE_DISTANCE_THRESHOLD = 0.04
def _yx_in_bounding_boxes(
yx, bounding_boxes
):
"""Check if the (y,x) point is contained in each bounding box.
Args:
yx: The (y, x) coordinate in pixels of the point.
bounding_boxes: A 2D int array of shape (num_bboxes, 4), where each row
represents a bounding box: (y_top_left, x_top_left, box_height,
box_width). Note: containment is inclusive of the bounding box edges.
Returns:
is_inside: A 1D bool array where each element specifies if the point is
contained within the respective box.
"""
y, x = yx
# `bounding_boxes` has shape (n_elements, 4); we extract each array along the
# last axis into shape (n_elements, 1), then squeeze unneeded dimension.
top, left, height, width = [
jnp.squeeze(v, axis=-1) for v in jnp.split(bounding_boxes, 4, axis=-1)
]
# The y-axis is inverted for AndroidEnv, so bottom = top + height.
bottom, right = top + height, left + width
return jnp.logical_and(y >= top, y <= bottom) & jnp.logical_and(
x >= left, x <= right)
def _resize_annotation_bounding_boxes(
annotation_positions, annotation_width_augment_fraction,
annotation_height_augment_fraction):
"""Resize the bounding boxes by the given fractions.
Args:
annotation_positions: Array of shape (N, 4), where each row represents the
(y, x, height, width) of the bounding boxes.
annotation_width_augment_fraction: The fraction to augment the box widths,
E.g., 1.4 == 240% total increase.
annotation_height_augment_fraction: Same as described for width, but for box
height.
Returns:
Resized bounding box.
"""
height_change = (
annotation_height_augment_fraction * annotation_positions[:, 2])
width_change = (
annotation_width_augment_fraction * annotation_positions[:, 3])
# Limit bounding box positions to the screen.
resized_annotations = jnp.stack([
jnp.maximum(0, annotation_positions[:, 0] - (height_change / 2)),
jnp.maximum(0, annotation_positions[:, 1] - (width_change / 2)),
jnp.minimum(1, annotation_positions[:, 2] + height_change),
jnp.minimum(1, annotation_positions[:, 3] + width_change),
],
axis=1)
return resized_annotations
def is_tap_action(normalized_start_yx,
normalized_end_yx):
distance = jnp.linalg.norm(
jnp.array(normalized_start_yx) - jnp.array(normalized_end_yx))
return distance <= _SWIPE_DISTANCE_THRESHOLD
def _is_non_dual_point_action(action_type):
return jnp.not_equal(action_type, ActionType.DUAL_POINT)
def _check_tap_actions_match(
tap_1_yx,
tap_2_yx,
annotation_positions,
matching_tap_distance_threshold_screen_percentage,
annotation_width_augment_fraction,
annotation_height_augment_fraction,
):
"""Determines if two tap actions are the same."""
resized_annotation_positions = _resize_annotation_bounding_boxes(
annotation_positions,
annotation_width_augment_fraction,
annotation_height_augment_fraction,
)
# Check if the ground truth tap action falls in an annotation's bounding box.
tap1_in_box = _yx_in_bounding_boxes(tap_1_yx, resized_annotation_positions)
tap2_in_box = _yx_in_bounding_boxes(tap_2_yx, resized_annotation_positions)
both_in_box = jnp.max(tap1_in_box & tap2_in_box)
# If the ground-truth tap action falls outside any of the annotation
# bounding boxes or one of the actions is inside a bounding box and the other
# is outside bounding box or vice versa, compare the points using Euclidean
# distance.
within_threshold = (
jnp.linalg.norm(jnp.array(tap_1_yx) - jnp.array(tap_2_yx))
<= matching_tap_distance_threshold_screen_percentage
)
return jnp.logical_or(both_in_box, within_threshold)
def _check_drag_actions_match(
drag_1_touch_yx,
drag_1_lift_yx,
drag_2_touch_yx,
drag_2_lift_yx,
):
"""Determines if two drag actions are the same."""
# Store drag deltas (the change in the y and x coordinates from touch to
# lift), magnitudes, and the index of the main axis, which is the axis with
# the greatest change in coordinate value (e.g. a drag starting at (0, 0) and
# ending at (0.3, 0.5) has a main axis index of 1).
drag_1_deltas = drag_1_lift_yx - drag_1_touch_yx
drag_1_magnitudes = jnp.abs(drag_1_deltas)
drag_1_main_axis = np.argmax(drag_1_magnitudes)
drag_2_deltas = drag_2_lift_yx - drag_2_touch_yx
drag_2_magnitudes = jnp.abs(drag_2_deltas)
drag_2_main_axis = np.argmax(drag_2_magnitudes)
return jnp.equal(drag_1_main_axis, drag_2_main_axis)
def check_actions_match(
action_1_touch_yx,
action_1_lift_yx,
action_1_action_type,
action_2_touch_yx,
action_2_lift_yx,
action_2_action_type,
annotation_positions,
tap_distance_threshold = _TAP_DISTANCE_THRESHOLD,
annotation_width_augment_fraction = ANNOTATION_WIDTH_AUGMENT_FRACTION,
annotation_height_augment_fraction = ANNOTATION_HEIGHT_AUGMENT_FRACTION,
):
"""Determines if two actions are considered to be the same.
Two actions being "the same" is defined here as two actions that would result
in a similar screen state.
Args:
action_1_touch_yx: The (y, x) coordinates of the first action's touch.
action_1_lift_yx: The (y, x) coordinates of the first action's lift.
action_1_action_type: The action type of the first action.
action_2_touch_yx: The (y, x) coordinates of the second action's touch.
action_2_lift_yx: The (y, x) coordinates of the second action's lift.
action_2_action_type: The action type of the second action.
annotation_positions: The positions of the UI annotations for the screen. It
is A 2D int array of shape (num_bboxes, 4), where each row represents a
bounding box: (y_top_left, x_top_left, box_height, box_width). Note that
containment is inclusive of the bounding box edges.
tap_distance_threshold: The threshold that determines if two taps result in
a matching screen state if they don't fall the same bounding boxes.
annotation_width_augment_fraction: The fraction to increase the width of the
bounding box by.
annotation_height_augment_fraction: The fraction to increase the height of
of the bounding box by.
Returns:
A boolean representing whether the two given actions are the same or not.
"""
action_1_touch_yx = jnp.asarray(action_1_touch_yx)
action_1_lift_yx = jnp.asarray(action_1_lift_yx)
action_2_touch_yx = jnp.asarray(action_2_touch_yx)
action_2_lift_yx = jnp.asarray(action_2_lift_yx)
# Checks if at least one of the actions is global (i.e. not DUAL_POINT),
# because if that is the case, only the actions' types need to be compared.
has_non_dual_point_action = jnp.logical_or(
_is_non_dual_point_action(action_1_action_type),
_is_non_dual_point_action(action_2_action_type),
)
#print("non dual point: "+str(has_non_dual_point_action))
different_dual_point_types = jnp.logical_xor(
is_tap_action(action_1_touch_yx, action_1_lift_yx),
is_tap_action(action_2_touch_yx, action_2_lift_yx),
)
#print("different dual type: "+str(different_dual_point_types))
is_tap = jnp.logical_and(
is_tap_action(action_1_touch_yx, action_1_lift_yx),
is_tap_action(action_2_touch_yx, action_2_lift_yx),
)
#print("is tap: "+str(is_tap))
taps_match = _check_tap_actions_match(
action_1_touch_yx,
action_2_touch_yx,
annotation_positions,
tap_distance_threshold,
annotation_width_augment_fraction,
annotation_height_augment_fraction,
)
#print("tap match: "+str(taps_match))
taps_match = jnp.logical_and(is_tap, taps_match)
#print("tap match: "+str(taps_match))
drags_match = _check_drag_actions_match(
action_1_touch_yx, action_1_lift_yx, action_2_touch_yx, action_2_lift_yx
)
drags_match = jnp.where(is_tap, False, drags_match)
#print("drag match: "+str(drags_match))
return jnp.where(
has_non_dual_point_action,
jnp.equal(action_1_action_type, action_2_action_type),
jnp.where(
different_dual_point_types,
False,
jnp.logical_or(taps_match, drags_match),
),
)
def action_2_format(step_data):
# 把test数据集中的动作格式转换为计算matching score的格式
action_type = step_data["action_type_id"]
if action_type == 4:
if step_data["action_type_text"] == 'click': # 点击
touch_point = step_data["touch"]
lift_point = step_data["lift"]
else: # 上下左右滑动
if step_data["action_type_text"] == 'scroll down':
touch_point = [0.5, 0.8]
lift_point = [0.5, 0.2]
elif step_data["action_type_text"] == 'scroll up':
touch_point = [0.5, 0.2]
lift_point = [0.5, 0.8]
elif step_data["action_type_text"] == 'scroll left':
touch_point = [0.2, 0.5]
lift_point = [0.8, 0.5]
elif step_data["action_type_text"] == 'scroll right':
touch_point = [0.8, 0.5]
lift_point = [0.2, 0.5]
else:
touch_point = [-1.0, -1.0]
lift_point = [-1.0, -1.0]
if action_type == 3:
typed_text = step_data["type_text"]
else:
typed_text = ""
action = {"action_type": action_type, "touch_point": touch_point, "lift_point": lift_point,
"typed_text": typed_text}
action["touch_point"] = [action["touch_point"][1], action["touch_point"][0]]
action["lift_point"] = [action["lift_point"][1], action["lift_point"][0]]
action["typed_text"] = action["typed_text"].lower()
return action
def pred_2_format(step_data):
# 把模型输出的内容转换为计算action_matching的格式
action_type = step_data["action_type"]
if action_type == 4: # 点击
action_type_new = 4
touch_point = step_data["click_point"]
lift_point = step_data["click_point"]
typed_text = ""
elif action_type == 0:
action_type_new = 4
touch_point = [0.5, 0.8]
lift_point = [0.5, 0.2]
typed_text = ""
elif action_type == 1:
action_type_new = 4
touch_point = [0.5, 0.2]
lift_point = [0.5, 0.8]
typed_text = ""
elif action_type == 8:
action_type_new = 4
touch_point = [0.2, 0.5]
lift_point = [0.8, 0.5]
typed_text = ""
elif action_type == 9:
action_type_new = 4
touch_point = [0.8, 0.5]
lift_point = [0.2, 0.5]
typed_text = ""
else:
action_type_new = action_type
touch_point = [-1.0, -1.0]
lift_point = [-1.0, -1.0]
typed_text = ""
if action_type_new == 3:
typed_text = step_data["typed_text"]
action = {"action_type": action_type_new, "touch_point": touch_point, "lift_point": lift_point,
"typed_text": typed_text}
action["touch_point"] = [action["touch_point"][1], action["touch_point"][0]]
action["lift_point"] = [action["lift_point"][1], action["lift_point"][0]]
action["typed_text"] = action["typed_text"].lower()
return action
def pred_2_format_simplified(step_data):
# 把模型输出的内容转换为计算action_matching的格式
action_type = step_data["action_type"]
if action_type == 'click' : # 点击
action_type_new = 4
touch_point = step_data["click_point"]
lift_point = step_data["click_point"]
typed_text = ""
elif action_type == 'scroll' and step_data["direction"] == 'down':
action_type_new = 4
touch_point = [0.5, 0.8]
lift_point = [0.5, 0.2]
typed_text = ""
elif action_type == 'scroll' and step_data["direction"] == 'up':
action_type_new = 4
touch_point = [0.5, 0.2]
lift_point = [0.5, 0.8]
typed_text = ""
elif action_type == 'scroll' and step_data["direction"] == 'left':
action_type_new = 4
touch_point = [0.2, 0.5]
lift_point = [0.8, 0.5]
typed_text = ""
elif action_type == 'scroll' and step_data["direction"] == 'right':
action_type_new = 4
touch_point = [0.8, 0.5]
lift_point = [0.2, 0.5]
typed_text = ""
elif action_type == 'type':
action_type_new = 3
touch_point = [-1.0, -1.0]
lift_point = [-1.0, -1.0]
typed_text = step_data["text"]
elif action_type == 'navigate_back':
action_type_new = 5
touch_point = [-1.0, -1.0]
lift_point = [-1.0, -1.0]
typed_text = ""
elif action_type == 'navigate_home':
action_type_new = 6
touch_point = [-1.0, -1.0]
lift_point = [-1.0, -1.0]
typed_text = ""
else:
action_type_new = action_type
touch_point = [-1.0, -1.0]
lift_point = [-1.0, -1.0]
typed_text = ""
# if action_type_new == 'type':
# typed_text = step_data["text"]
action = {"action_type": action_type_new, "touch_point": touch_point, "lift_point": lift_point,
"typed_text": typed_text}
action["touch_point"] = [action["touch_point"][1], action["touch_point"][0]]
action["lift_point"] = [action["lift_point"][1], action["lift_point"][0]]
action["typed_text"] = action["typed_text"].lower()
return action |