|
from typing import Any, List, Callable |
|
import cv2 |
|
import threading |
|
from gfpgan.utils import GFPGANer |
|
|
|
import roop.globals |
|
import roop.processors.frame.core |
|
from roop.core import update_status |
|
from roop.face_analyser import get_many_faces |
|
from roop.typing import Frame, Face |
|
from roop.utilities import conditional_download, resolve_relative_path, is_image, is_video |
|
|
|
FACE_ENHANCER = None |
|
THREAD_SEMAPHORE = threading.Semaphore() |
|
THREAD_LOCK = threading.Lock() |
|
NAME = 'ROOP.FACE-ENHANCER' |
|
|
|
|
|
def get_face_enhancer() -> Any: |
|
global FACE_ENHANCER |
|
|
|
with THREAD_LOCK: |
|
if FACE_ENHANCER is None: |
|
model_path = resolve_relative_path('../models/GFPGANv1.4.pth') |
|
|
|
FACE_ENHANCER = GFPGANer(model_path=model_path, upscale=1, device=get_device()) |
|
return FACE_ENHANCER |
|
|
|
|
|
def get_device() -> str: |
|
if 'CUDAExecutionProvider' in roop.globals.execution_providers: |
|
return 'cuda' |
|
if 'CoreMLExecutionProvider' in roop.globals.execution_providers: |
|
return 'mps' |
|
return 'cpu' |
|
|
|
|
|
def clear_face_enhancer() -> None: |
|
global FACE_ENHANCER |
|
|
|
FACE_ENHANCER = None |
|
|
|
|
|
def pre_check() -> bool: |
|
download_directory_path = resolve_relative_path('../models') |
|
conditional_download(download_directory_path, ['https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/GFPGANv1.4.pth']) |
|
return True |
|
|
|
|
|
def pre_start() -> bool: |
|
if not is_image(roop.globals.target_path) and not is_video(roop.globals.target_path): |
|
update_status('Select an image or video for target path.', NAME) |
|
return False |
|
return True |
|
|
|
|
|
def post_process() -> None: |
|
clear_face_enhancer() |
|
|
|
|
|
def enhance_face(target_face: Face, temp_frame: Frame) -> Frame: |
|
start_x, start_y, end_x, end_y = map(int, target_face['bbox']) |
|
padding_x = int((end_x - start_x) * 0.5) |
|
padding_y = int((end_y - start_y) * 0.5) |
|
start_x = max(0, start_x - padding_x) |
|
start_y = max(0, start_y - padding_y) |
|
end_x = max(0, end_x + padding_x) |
|
end_y = max(0, end_y + padding_y) |
|
temp_face = temp_frame[start_y:end_y, start_x:end_x] |
|
if temp_face.size: |
|
with THREAD_SEMAPHORE: |
|
_, _, temp_face = get_face_enhancer().enhance( |
|
temp_face, |
|
paste_back=True |
|
) |
|
temp_frame[start_y:end_y, start_x:end_x] = temp_face |
|
return temp_frame |
|
|
|
|
|
def process_frame(source_face: Face, reference_face: Face, temp_frame: Frame) -> Frame: |
|
many_faces = get_many_faces(temp_frame) |
|
if many_faces: |
|
for target_face in many_faces: |
|
temp_frame = enhance_face(target_face, temp_frame) |
|
return temp_frame |
|
|
|
|
|
def process_frames(source_path: str, temp_frame_paths: List[str], update: Callable[[], None]) -> None: |
|
for temp_frame_path in temp_frame_paths: |
|
temp_frame = cv2.imread(temp_frame_path) |
|
result = process_frame(None, None, temp_frame) |
|
cv2.imwrite(temp_frame_path, result) |
|
if update: |
|
update() |
|
|
|
|
|
def process_image(source_path: str, target_path: str, output_path: str) -> None: |
|
target_frame = cv2.imread(target_path) |
|
result = process_frame(None, None, target_frame) |
|
cv2.imwrite(output_path, result) |
|
|
|
|
|
def process_video(source_path: str, temp_frame_paths: List[str]) -> None: |
|
roop.processors.frame.core.process_video(None, temp_frame_paths, process_frames) |
|
|