Spaces:
Running
Running
from typing import Any, Dict, Tuple, List | |
from functools import lru_cache | |
from cv2.typing import Size | |
import cv2 | |
import numpy | |
from facefusion.typing import Bbox, Kps, Frame, Matrix, Template, Padding | |
TEMPLATES : Dict[Template, numpy.ndarray[Any, Any]] =\ | |
{ | |
'arcface_v1': numpy.array( | |
[ | |
[ 39.7300, 51.1380 ], | |
[ 72.2700, 51.1380 ], | |
[ 56.0000, 68.4930 ], | |
[ 42.4630, 87.0100 ], | |
[ 69.5370, 87.0100 ] | |
]), | |
'arcface_v2': numpy.array( | |
[ | |
[ 38.2946, 51.6963 ], | |
[ 73.5318, 51.5014 ], | |
[ 56.0252, 71.7366 ], | |
[ 41.5493, 92.3655 ], | |
[ 70.7299, 92.2041 ] | |
]), | |
'ffhq': numpy.array( | |
[ | |
[ 192.98138, 239.94708 ], | |
[ 318.90277, 240.1936 ], | |
[ 256.63416, 314.01935 ], | |
[ 201.26117, 371.41043 ], | |
[ 313.08905, 371.15118 ] | |
]) | |
} | |
def warp_face(temp_frame : Frame, kps : Kps, template : Template, size : Size) -> Tuple[Frame, Matrix]: | |
normed_template = TEMPLATES.get(template) * size[1] / size[0] | |
affine_matrix = cv2.estimateAffinePartial2D(kps, normed_template, method = cv2.LMEDS)[0] | |
crop_frame = cv2.warpAffine(temp_frame, affine_matrix, (size[1], size[1]), borderMode = cv2.BORDER_REPLICATE) | |
return crop_frame, affine_matrix | |
def paste_back(temp_frame : Frame, crop_frame: Frame, affine_matrix : Matrix, face_mask_blur : float, face_mask_padding : Padding) -> Frame: | |
inverse_matrix = cv2.invertAffineTransform(affine_matrix) | |
temp_frame_size = temp_frame.shape[:2][::-1] | |
mask_size = tuple(crop_frame.shape[:2]) | |
mask_frame = create_static_mask_frame(mask_size, face_mask_blur, face_mask_padding) | |
inverse_mask_frame = cv2.warpAffine(mask_frame, inverse_matrix, temp_frame_size).clip(0, 1) | |
inverse_crop_frame = cv2.warpAffine(crop_frame, inverse_matrix, temp_frame_size, borderMode = cv2.BORDER_REPLICATE) | |
paste_frame = temp_frame.copy() | |
paste_frame[:, :, 0] = inverse_mask_frame * inverse_crop_frame[:, :, 0] + (1 - inverse_mask_frame) * temp_frame[:, :, 0] | |
paste_frame[:, :, 1] = inverse_mask_frame * inverse_crop_frame[:, :, 1] + (1 - inverse_mask_frame) * temp_frame[:, :, 1] | |
paste_frame[:, :, 2] = inverse_mask_frame * inverse_crop_frame[:, :, 2] + (1 - inverse_mask_frame) * temp_frame[:, :, 2] | |
return paste_frame | |
def paste_back_ellipse(temp_frame : Frame, crop_frame: Frame, affine_matrix : Matrix, face_mask_blur : float, face_mask_padding : Padding) -> Frame: | |
inverse_matrix = cv2.invertAffineTransform(affine_matrix) | |
temp_frame_size = temp_frame.shape[:2][::-1] | |
mask_size = tuple(crop_frame.shape[:2]) | |
mask_frame = create_ellipse_mask_frame(mask_size, face_mask_blur, face_mask_padding) | |
inverse_mask_frame = cv2.warpAffine(mask_frame, inverse_matrix, temp_frame_size).clip(0, 1) | |
inverse_crop_frame = cv2.warpAffine(crop_frame, inverse_matrix, temp_frame_size, borderMode = cv2.BORDER_REPLICATE) | |
paste_frame = temp_frame.copy() | |
paste_frame[:, :, 0] = inverse_mask_frame * inverse_crop_frame[:, :, 0] + (1 - inverse_mask_frame) * temp_frame[:, :, 0] | |
paste_frame[:, :, 1] = inverse_mask_frame * inverse_crop_frame[:, :, 1] + (1 - inverse_mask_frame) * temp_frame[:, :, 1] | |
paste_frame[:, :, 2] = inverse_mask_frame * inverse_crop_frame[:, :, 2] + (1 - inverse_mask_frame) * temp_frame[:, :, 2] | |
return paste_frame | |
def create_static_mask_frame(mask_size : Size, face_mask_blur : float, face_mask_padding : Padding) -> Frame: | |
mask_frame = numpy.ones(mask_size, numpy.float32) | |
blur_amount = int(mask_size[0] * 0.5 * face_mask_blur) | |
blur_area = max(blur_amount // 2, 1) | |
mask_frame[:max(blur_area, int(mask_size[1] * face_mask_padding[0] / 100)), :] = 0 | |
mask_frame[-max(blur_area, int(mask_size[1] * face_mask_padding[2] / 100)):, :] = 0 | |
mask_frame[:, :max(blur_area, int(mask_size[0] * face_mask_padding[3] / 100))] = 0 | |
mask_frame[:, -max(blur_area, int(mask_size[0] * face_mask_padding[1] / 100)):] = 0 | |
if blur_amount > 0: | |
mask_frame = cv2.GaussianBlur(mask_frame, (0, 0), blur_amount * 0.25) | |
return mask_frame | |
def create_ellipse_mask_frame(mask_size: Size, face_mask_blur: float, face_mask_padding: Padding) -> Frame: | |
mask_frame = numpy.zeros(mask_size, numpy.float32) | |
center = (mask_size[1] // 2, mask_size[0] // 2) | |
axes = (max(1, mask_size[1] // 2 - int(mask_size[1] * face_mask_padding[1] / 100)), | |
max(1, mask_size[0] // 2 - int(mask_size[0] * face_mask_padding[0] / 100))) | |
cv2.ellipse(mask_frame, center, axes, 0, 0, 360, 1, -1) | |
if face_mask_blur > 0: | |
blur_amount = int(mask_size[0] * 0.5 * face_mask_blur) | |
mask_frame = cv2.GaussianBlur(mask_frame, (0, 0), blur_amount * 0.25) | |
return mask_frame | |
def create_static_anchors(feature_stride : int, anchor_total : int, stride_height : int, stride_width : int) -> numpy.ndarray[Any, Any]: | |
y, x = numpy.mgrid[:stride_height, :stride_width][::-1] | |
anchors = numpy.stack((y, x), axis = -1) | |
anchors = (anchors * feature_stride).reshape((-1, 2)) | |
anchors = numpy.stack([ anchors ] * anchor_total, axis = 1).reshape((-1, 2)) | |
return anchors | |
def distance_to_bbox(points : numpy.ndarray[Any, Any], distance : numpy.ndarray[Any, Any]) -> Bbox: | |
x1 = points[:, 0] - distance[:, 0] | |
y1 = points[:, 1] - distance[:, 1] | |
x2 = points[:, 0] + distance[:, 2] | |
y2 = points[:, 1] + distance[:, 3] | |
bbox = numpy.column_stack([ x1, y1, x2, y2 ]) | |
return bbox | |
def distance_to_kps(points : numpy.ndarray[Any, Any], distance : numpy.ndarray[Any, Any]) -> Kps: | |
x = points[:, 0::2] + distance[:, 0::2] | |
y = points[:, 1::2] + distance[:, 1::2] | |
kps = numpy.stack((x, y), axis = -1) | |
return kps | |
def apply_nms(bbox_list : List[Bbox], iou_threshold : float) -> List[int]: | |
keep_indices = [] | |
dimension_list = numpy.reshape(bbox_list, (-1, 4)) | |
x1 = dimension_list[:, 0] | |
y1 = dimension_list[:, 1] | |
x2 = dimension_list[:, 2] | |
y2 = dimension_list[:, 3] | |
areas = (x2 - x1 + 1) * (y2 - y1 + 1) | |
indices = numpy.arange(len(bbox_list)) | |
while indices.size > 0: | |
index = indices[0] | |
remain_indices = indices[1:] | |
keep_indices.append(index) | |
xx1 = numpy.maximum(x1[index], x1[remain_indices]) | |
yy1 = numpy.maximum(y1[index], y1[remain_indices]) | |
xx2 = numpy.minimum(x2[index], x2[remain_indices]) | |
yy2 = numpy.minimum(y2[index], y2[remain_indices]) | |
width = numpy.maximum(0, xx2 - xx1 + 1) | |
height = numpy.maximum(0, yy2 - yy1 + 1) | |
iou = width * height / (areas[index] + areas[remain_indices] - width * height) | |
indices = indices[numpy.where(iou <= iou_threshold)[0] + 1] | |
return keep_indices | |