|
import importlib |
|
import math |
|
from collections import defaultdict |
|
from dataclasses import dataclass |
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union |
|
|
|
import imageio |
|
import numpy as np |
|
import PIL.Image |
|
import rembg |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import trimesh |
|
from omegaconf import DictConfig, OmegaConf |
|
from PIL import Image |
|
|
|
|
|
def parse_structured(fields: Any, cfg: Optional[Union[dict, DictConfig]] = None) -> Any: |
|
scfg = OmegaConf.merge(OmegaConf.structured(fields), cfg) |
|
return scfg |
|
|
|
|
|
def find_class(cls_string): |
|
module_string = ".".join(cls_string.split(".")[:-1]) |
|
cls_name = cls_string.split(".")[-1] |
|
module = importlib.import_module(module_string, package=None) |
|
cls = getattr(module, cls_name) |
|
return cls |
|
|
|
|
|
def get_intrinsic_from_fov(fov, H, W, bs=-1): |
|
focal_length = 0.5 * H / np.tan(0.5 * fov) |
|
intrinsic = np.identity(3, dtype=np.float32) |
|
intrinsic[0, 0] = focal_length |
|
intrinsic[1, 1] = focal_length |
|
intrinsic[0, 2] = W / 2.0 |
|
intrinsic[1, 2] = H / 2.0 |
|
|
|
if bs > 0: |
|
intrinsic = intrinsic[None].repeat(bs, axis=0) |
|
|
|
return torch.from_numpy(intrinsic) |
|
|
|
|
|
class BaseModule(nn.Module): |
|
@dataclass |
|
class Config: |
|
pass |
|
|
|
cfg: Config |
|
|
|
def __init__( |
|
self, cfg: Optional[Union[dict, DictConfig]] = None, *args, **kwargs |
|
) -> None: |
|
super().__init__() |
|
self.cfg = parse_structured(self.Config, cfg) |
|
self.configure(*args, **kwargs) |
|
|
|
def configure(self, *args, **kwargs) -> None: |
|
raise NotImplementedError |
|
|
|
|
|
class ImagePreprocessor: |
|
def convert_and_resize( |
|
self, |
|
image: Union[PIL.Image.Image, np.ndarray, torch.Tensor], |
|
size: int, |
|
): |
|
if isinstance(image, PIL.Image.Image): |
|
image = torch.from_numpy(np.array(image).astype(np.float32) / 255.0) |
|
elif isinstance(image, np.ndarray): |
|
if image.dtype == np.uint8: |
|
image = torch.from_numpy(image.astype(np.float32) / 255.0) |
|
else: |
|
image = torch.from_numpy(image) |
|
elif isinstance(image, torch.Tensor): |
|
pass |
|
|
|
batched = image.ndim == 4 |
|
|
|
if not batched: |
|
image = image[None, ...] |
|
image = F.interpolate( |
|
image.permute(0, 3, 1, 2), |
|
(size, size), |
|
mode="bilinear", |
|
align_corners=False, |
|
antialias=True, |
|
).permute(0, 2, 3, 1) |
|
if not batched: |
|
image = image[0] |
|
return image |
|
|
|
def __call__( |
|
self, |
|
image: Union[ |
|
PIL.Image.Image, |
|
np.ndarray, |
|
torch.FloatTensor, |
|
List[PIL.Image.Image], |
|
List[np.ndarray], |
|
List[torch.FloatTensor], |
|
], |
|
size: int, |
|
) -> Any: |
|
if isinstance(image, (np.ndarray, torch.FloatTensor)) and image.ndim == 4: |
|
image = self.convert_and_resize(image, size) |
|
else: |
|
if not isinstance(image, list): |
|
image = [image] |
|
image = [self.convert_and_resize(im, size) for im in image] |
|
image = torch.stack(image, dim=0) |
|
return image |
|
|
|
|
|
def rays_intersect_bbox( |
|
rays_o: torch.Tensor, |
|
rays_d: torch.Tensor, |
|
radius: float, |
|
near: float = 0.0, |
|
valid_thresh: float = 0.01, |
|
): |
|
input_shape = rays_o.shape[:-1] |
|
rays_o, rays_d = rays_o.view(-1, 3), rays_d.view(-1, 3) |
|
rays_d_valid = torch.where( |
|
rays_d.abs() < 1e-6, torch.full_like(rays_d, 1e-6), rays_d |
|
) |
|
if type(radius) in [int, float]: |
|
radius = torch.FloatTensor( |
|
[[-radius, radius], [-radius, radius], [-radius, radius]] |
|
).to(rays_o.device) |
|
radius = ( |
|
1.0 - 1.0e-3 |
|
) * radius |
|
interx0 = (radius[..., 1] - rays_o) / rays_d_valid |
|
interx1 = (radius[..., 0] - rays_o) / rays_d_valid |
|
t_near = torch.minimum(interx0, interx1).amax(dim=-1).clamp_min(near) |
|
t_far = torch.maximum(interx0, interx1).amin(dim=-1) |
|
|
|
|
|
rays_valid = t_far - t_near > valid_thresh |
|
|
|
t_near[torch.where(~rays_valid)] = 0.0 |
|
t_far[torch.where(~rays_valid)] = 0.0 |
|
|
|
t_near = t_near.view(*input_shape, 1) |
|
t_far = t_far.view(*input_shape, 1) |
|
rays_valid = rays_valid.view(*input_shape) |
|
|
|
return t_near, t_far, rays_valid |
|
|
|
|
|
def chunk_batch(func: Callable, chunk_size: int, *args, **kwargs) -> Any: |
|
if chunk_size <= 0: |
|
return func(*args, **kwargs) |
|
B = None |
|
for arg in list(args) + list(kwargs.values()): |
|
if isinstance(arg, torch.Tensor): |
|
B = arg.shape[0] |
|
break |
|
assert ( |
|
B is not None |
|
), "No tensor found in args or kwargs, cannot determine batch size." |
|
out = defaultdict(list) |
|
out_type = None |
|
|
|
for i in range(0, max(1, B), chunk_size): |
|
out_chunk = func( |
|
*[ |
|
arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg |
|
for arg in args |
|
], |
|
**{ |
|
k: arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg |
|
for k, arg in kwargs.items() |
|
}, |
|
) |
|
if out_chunk is None: |
|
continue |
|
out_type = type(out_chunk) |
|
if isinstance(out_chunk, torch.Tensor): |
|
out_chunk = {0: out_chunk} |
|
elif isinstance(out_chunk, tuple) or isinstance(out_chunk, list): |
|
chunk_length = len(out_chunk) |
|
out_chunk = {i: chunk for i, chunk in enumerate(out_chunk)} |
|
elif isinstance(out_chunk, dict): |
|
pass |
|
else: |
|
print( |
|
f"Return value of func must be in type [torch.Tensor, list, tuple, dict], get {type(out_chunk)}." |
|
) |
|
exit(1) |
|
for k, v in out_chunk.items(): |
|
v = v if torch.is_grad_enabled() else v.detach() |
|
out[k].append(v) |
|
|
|
if out_type is None: |
|
return None |
|
|
|
out_merged: Dict[Any, Optional[torch.Tensor]] = {} |
|
for k, v in out.items(): |
|
if all([vv is None for vv in v]): |
|
|
|
out_merged[k] = None |
|
elif all([isinstance(vv, torch.Tensor) for vv in v]): |
|
out_merged[k] = torch.cat(v, dim=0) |
|
else: |
|
raise TypeError( |
|
f"Unsupported types in return value of func: {[type(vv) for vv in v if not isinstance(vv, torch.Tensor)]}" |
|
) |
|
|
|
if out_type is torch.Tensor: |
|
return out_merged[0] |
|
elif out_type in [tuple, list]: |
|
return out_type([out_merged[i] for i in range(chunk_length)]) |
|
elif out_type is dict: |
|
return out_merged |
|
|
|
|
|
ValidScale = Union[Tuple[float, float], torch.FloatTensor] |
|
|
|
|
|
def scale_tensor(dat: torch.FloatTensor, inp_scale: ValidScale, tgt_scale: ValidScale): |
|
if inp_scale is None: |
|
inp_scale = (0, 1) |
|
if tgt_scale is None: |
|
tgt_scale = (0, 1) |
|
if isinstance(tgt_scale, torch.FloatTensor): |
|
assert dat.shape[-1] == tgt_scale.shape[-1] |
|
dat = (dat - inp_scale[0]) / (inp_scale[1] - inp_scale[0]) |
|
dat = dat * (tgt_scale[1] - tgt_scale[0]) + tgt_scale[0] |
|
return dat |
|
|
|
|
|
def get_activation(name) -> Callable: |
|
if name is None: |
|
return lambda x: x |
|
name = name.lower() |
|
if name == "none": |
|
return lambda x: x |
|
elif name == "exp": |
|
return lambda x: torch.exp(x) |
|
elif name == "sigmoid": |
|
return lambda x: torch.sigmoid(x) |
|
elif name == "tanh": |
|
return lambda x: torch.tanh(x) |
|
elif name == "softplus": |
|
return lambda x: F.softplus(x) |
|
else: |
|
try: |
|
return getattr(F, name) |
|
except AttributeError: |
|
raise ValueError(f"Unknown activation function: {name}") |
|
|
|
|
|
def get_ray_directions( |
|
H: int, |
|
W: int, |
|
focal: Union[float, Tuple[float, float]], |
|
principal: Optional[Tuple[float, float]] = None, |
|
use_pixel_centers: bool = True, |
|
normalize: bool = True, |
|
) -> torch.FloatTensor: |
|
""" |
|
Get ray directions for all pixels in camera coordinate. |
|
Reference: https://www.scratchapixel.com/lessons/3d-basic-rendering/ |
|
ray-tracing-generating-camera-rays/standard-coordinate-systems |
|
|
|
Inputs: |
|
H, W, focal, principal, use_pixel_centers: image height, width, focal length, principal point and whether use pixel centers |
|
Outputs: |
|
directions: (H, W, 3), the direction of the rays in camera coordinate |
|
""" |
|
pixel_center = 0.5 if use_pixel_centers else 0 |
|
|
|
if isinstance(focal, float): |
|
fx, fy = focal, focal |
|
cx, cy = W / 2, H / 2 |
|
else: |
|
fx, fy = focal |
|
assert principal is not None |
|
cx, cy = principal |
|
|
|
i, j = torch.meshgrid( |
|
torch.arange(W, dtype=torch.float32) + pixel_center, |
|
torch.arange(H, dtype=torch.float32) + pixel_center, |
|
indexing="xy", |
|
) |
|
|
|
directions = torch.stack([(i - cx) / fx, -(j - cy) / fy, -torch.ones_like(i)], -1) |
|
|
|
if normalize: |
|
directions = F.normalize(directions, dim=-1) |
|
|
|
return directions |
|
|
|
|
|
def get_rays( |
|
directions, |
|
c2w, |
|
keepdim=False, |
|
normalize=False, |
|
) -> Tuple[torch.FloatTensor, torch.FloatTensor]: |
|
|
|
assert directions.shape[-1] == 3 |
|
|
|
if directions.ndim == 2: |
|
if c2w.ndim == 2: |
|
c2w = c2w[None, :, :] |
|
assert c2w.ndim == 3 |
|
rays_d = (directions[:, None, :] * c2w[:, :3, :3]).sum(-1) |
|
rays_o = c2w[:, :3, 3].expand(rays_d.shape) |
|
elif directions.ndim == 3: |
|
assert c2w.ndim in [2, 3] |
|
if c2w.ndim == 2: |
|
rays_d = (directions[:, :, None, :] * c2w[None, None, :3, :3]).sum( |
|
-1 |
|
) |
|
rays_o = c2w[None, None, :3, 3].expand(rays_d.shape) |
|
elif c2w.ndim == 3: |
|
rays_d = (directions[None, :, :, None, :] * c2w[:, None, None, :3, :3]).sum( |
|
-1 |
|
) |
|
rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape) |
|
elif directions.ndim == 4: |
|
assert c2w.ndim == 3 |
|
rays_d = (directions[:, :, :, None, :] * c2w[:, None, None, :3, :3]).sum( |
|
-1 |
|
) |
|
rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape) |
|
|
|
if normalize: |
|
rays_d = F.normalize(rays_d, dim=-1) |
|
if not keepdim: |
|
rays_o, rays_d = rays_o.reshape(-1, 3), rays_d.reshape(-1, 3) |
|
|
|
return rays_o, rays_d |
|
|
|
|
|
def get_spherical_cameras( |
|
n_views: int, |
|
elevation_deg: float, |
|
camera_distance: float, |
|
fovy_deg: float, |
|
height: int, |
|
width: int, |
|
): |
|
azimuth_deg = torch.linspace(0, 360.0, n_views + 1)[:n_views] |
|
elevation_deg = torch.full_like(azimuth_deg, elevation_deg) |
|
camera_distances = torch.full_like(elevation_deg, camera_distance) |
|
|
|
elevation = elevation_deg * math.pi / 180 |
|
azimuth = azimuth_deg * math.pi / 180 |
|
|
|
|
|
|
|
|
|
camera_positions = torch.stack( |
|
[ |
|
camera_distances * torch.cos(elevation) * torch.cos(azimuth), |
|
camera_distances * torch.cos(elevation) * torch.sin(azimuth), |
|
camera_distances * torch.sin(elevation), |
|
], |
|
dim=-1, |
|
) |
|
|
|
|
|
center = torch.zeros_like(camera_positions) |
|
|
|
up = torch.as_tensor([0, 0, 1], dtype=torch.float32)[None, :].repeat(n_views, 1) |
|
|
|
fovy = torch.full_like(elevation_deg, fovy_deg) * math.pi / 180 |
|
|
|
lookat = F.normalize(center - camera_positions, dim=-1) |
|
right = F.normalize(torch.cross(lookat, up), dim=-1) |
|
up = F.normalize(torch.cross(right, lookat), dim=-1) |
|
c2w3x4 = torch.cat( |
|
[torch.stack([right, up, -lookat], dim=-1), camera_positions[:, :, None]], |
|
dim=-1, |
|
) |
|
c2w = torch.cat([c2w3x4, torch.zeros_like(c2w3x4[:, :1])], dim=1) |
|
c2w[:, 3, 3] = 1.0 |
|
|
|
|
|
focal_length = 0.5 * height / torch.tan(0.5 * fovy) |
|
directions_unit_focal = get_ray_directions( |
|
H=height, |
|
W=width, |
|
focal=1.0, |
|
) |
|
directions = directions_unit_focal[None, :, :, :].repeat(n_views, 1, 1, 1) |
|
directions[:, :, :, :2] = ( |
|
directions[:, :, :, :2] / focal_length[:, None, None, None] |
|
) |
|
|
|
rays_o, rays_d = get_rays(directions, c2w, keepdim=True, normalize=True) |
|
|
|
return rays_o, rays_d |
|
|
|
|
|
def remove_background( |
|
image: PIL.Image.Image, |
|
rembg_session: Any = None, |
|
force: bool = False, |
|
**rembg_kwargs, |
|
) -> PIL.Image.Image: |
|
do_remove = True |
|
if image.mode == "RGBA" and image.getextrema()[3][0] < 255: |
|
do_remove = False |
|
do_remove = do_remove or force |
|
if do_remove: |
|
image = rembg.remove(image, session=rembg_session, **rembg_kwargs) |
|
return image |
|
|
|
|
|
def resize_foreground( |
|
image: PIL.Image.Image, |
|
ratio: float, |
|
) -> PIL.Image.Image: |
|
image = np.array(image) |
|
assert image.shape[-1] == 4 |
|
alpha = np.where(image[..., 3] > 0) |
|
y1, y2, x1, x2 = ( |
|
alpha[0].min(), |
|
alpha[0].max(), |
|
alpha[1].min(), |
|
alpha[1].max(), |
|
) |
|
|
|
fg = image[y1:y2, x1:x2] |
|
|
|
size = max(fg.shape[0], fg.shape[1]) |
|
ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2 |
|
ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0 |
|
new_image = np.pad( |
|
fg, |
|
((ph0, ph1), (pw0, pw1), (0, 0)), |
|
mode="constant", |
|
constant_values=((0, 0), (0, 0), (0, 0)), |
|
) |
|
|
|
|
|
new_size = int(new_image.shape[0] / ratio) |
|
|
|
ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2 |
|
ph1, pw1 = new_size - size - ph0, new_size - size - pw0 |
|
new_image = np.pad( |
|
new_image, |
|
((ph0, ph1), (pw0, pw1), (0, 0)), |
|
mode="constant", |
|
constant_values=((0, 0), (0, 0), (0, 0)), |
|
) |
|
new_image = PIL.Image.fromarray(new_image) |
|
return new_image |
|
|
|
|
|
def save_video( |
|
frames: List[PIL.Image.Image], |
|
output_path: str, |
|
fps: int = 30, |
|
): |
|
|
|
frames = [np.array(frame) for frame in frames] |
|
writer = imageio.get_writer(output_path, fps=fps) |
|
for frame in frames: |
|
writer.append_data(frame) |
|
writer.close() |
|
|
|
|
|
def to_gradio_3d_orientation(mesh): |
|
mesh.apply_transform(trimesh.transformations.rotation_matrix(-np.pi/2, [1, 0, 0])) |
|
mesh.apply_transform(trimesh.transformations.rotation_matrix(np.pi/2, [0, 1, 0])) |
|
return mesh |
|
|