Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline | |
# Load the model for food classification | |
food_classifier = pipeline(task="image-classification", model="mhdiqbalpradipta/minang_food_classification") | |
def predict_food(image): | |
# Perform prediction using the model | |
result = food_classifier(images=image)[0] | |
# Save label and score | |
food_label = result['label'] | |
score = result['score'] | |
return f"Food: {food_label}, Score: {score:.2f}" | |
# Gradio Interface | |
image_in = gr.Image(type='pil') | |
label_out = "text" | |
example_images = ['ayam_goreng.jpg', 'ayam_pop.jpg', 'daging_rendang.jpg', 'dendeng_batokok.jpg', 'gulai_ikan.jpg', 'gulai_tambusu.jpg', 'gulai_tunjang.jpg', 'telur_balado.jpg', 'telur_dadar.jpg'] | |
intf = gr.Interface(fn=predict_food, inputs=image_in, outputs=label_out, examples=example_images, title="Minang Food Classifier", description="Upload an image of food to classify it into Minang dishes.") | |
intf.launch(share=False); |