Spaces:
Runtime error
Runtime error
File size: 6,981 Bytes
c5d5ef0 20d1a10 c5d5ef0 804efd3 c5d5ef0 804efd3 bb26736 c5d5ef0 eaaab0d c5d5ef0 804efd3 bb26736 af372ca b25dc1d af372ca 1b76f39 804efd3 c5d5ef0 eaaab0d c5d5ef0 1ed55a8 c5d5ef0 eaaab0d c5d5ef0 eaaab0d c5d5ef0 eaaab0d c5d5ef0 eaaab0d 534fa09 523ffdf bb26736 c5d5ef0 bb26736 c5d5ef0 534fa09 c5d5ef0 af372ca c5d5ef0 1ed55a8 c5d5ef0 1ed55a8 c5d5ef0 1ed55a8 af372ca c5d5ef0 1ed55a8 af372ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import csv
import os
import tempfile
import gradio as gr
import requests
import torch
import torchvision
import torchvision.transforms as T
from PIL import Image
from featup.util import norm
from torchaudio.functional import resample
from denseav.train import LitAVAligner
from denseav.plotting import plot_attention_video, plot_2head_attention_video, plot_feature_video
from denseav.shared import norm, crop_to_divisor, blur_dim
from os.path import join
if __name__ == "__main__":
mode = "hf"
if mode == "local":
sample_videos_dir = "samples"
else:
os.environ['TORCH_HOME'] = '/tmp/.cache'
os.environ['HF_HOME'] = '/tmp/.cache'
os.environ['HF_DATASETS_CACHE'] = '/tmp/.cache'
os.environ['TRANSFORMERS_CACHE'] = '/tmp/.cache'
os.environ['GRADIO_EXAMPLES_CACHE'] = '/tmp/gradio_cache'
sample_videos_dir = "/tmp/samples"
def download_video(url, save_path):
response = requests.get(url)
with open(save_path, 'wb') as file:
file.write(response.content)
base_url = "https://marhamilresearch4.blob.core.windows.net/denseav-public/samples/"
sample_videos_urls = {
"puppies.mp4": base_url + "puppies.mp4",
"peppers.mp4": base_url + "peppers.mp4",
"boat.mp4": base_url + "boat.mp4",
"elephant2.mp4": base_url + "elephant2.mp4",
}
# Ensure the directory for sample videos exists
os.makedirs(sample_videos_dir, exist_ok=True)
# Download each sample video
for filename, url in sample_videos_urls.items():
save_path = os.path.join(sample_videos_dir, filename)
# Download the video if it doesn't already exist
if not os.path.exists(save_path):
print(f"Downloading {filename}...")
download_video(url, save_path)
else:
print(f"{filename} already exists. Skipping download.")
csv.field_size_limit(100000000)
options = ['language', "sound-language", "sound"]
load_size = 224
plot_size = 224
video_input = gr.Video(label="Choose a video to featurize", height=480)
model_option = gr.Radio(options, value="language", label='Choose a model')
video_output1 = gr.Video(label="Audio Video Attention", height=480)
video_output2 = gr.Video(label="Multi-Head Audio Video Attention (Only Availible for sound_and_language)",
height=480)
video_output3 = gr.Video(label="Visual Features", height=480)
models = {o: LitAVAligner.from_pretrained(f"mhamilton723/DenseAV-{o}") for o in options}
def process_video(video, model_option):
model = models[model_option].cuda()
original_frames, audio, info = torchvision.io.read_video(video, end_pts=10, pts_unit='sec')
sample_rate = 16000
if info["audio_fps"] != sample_rate:
audio = resample(audio, info["audio_fps"], sample_rate)
audio = audio[0].unsqueeze(0)
img_transform = T.Compose([
T.Resize(load_size, Image.BILINEAR),
lambda x: crop_to_divisor(x, 8),
lambda x: x.to(torch.float32) / 255,
norm])
frames = torch.cat([img_transform(f.permute(2, 0, 1)).unsqueeze(0) for f in original_frames], axis=0)
plotting_img_transform = T.Compose([
T.Resize(plot_size, Image.BILINEAR),
lambda x: crop_to_divisor(x, 8),
lambda x: x.to(torch.float32) / 255])
frames_to_plot = plotting_img_transform(original_frames.permute(0, 3, 1, 2))
with torch.no_grad():
audio_feats = model.forward_audio({"audio": audio.cuda()})
audio_feats = {k: v.cpu() for k, v in audio_feats.items()}
image_feats = model.forward_image({"frames": frames.unsqueeze(0).cuda()}, max_batch_size=2)
image_feats = {k: v.cpu() for k, v in image_feats.items()}
sim_by_head = model.sim_agg.get_pairwise_sims(
{**image_feats, **audio_feats},
raw=False,
agg_sim=False,
agg_heads=False
).mean(dim=-2).cpu()
sim_by_head = blur_dim(sim_by_head, window=3, dim=-1)
print(sim_by_head.shape)
temp_video_path_1 = tempfile.mktemp(suffix='.mp4')
plot_attention_video(
sim_by_head,
frames_to_plot,
audio,
info["video_fps"],
sample_rate,
temp_video_path_1)
if model_option == "sound_and_language":
temp_video_path_2 = tempfile.mktemp(suffix='.mp4')
plot_2head_attention_video(
sim_by_head,
frames_to_plot,
audio,
info["video_fps"],
sample_rate,
temp_video_path_2)
else:
temp_video_path_2 = None
temp_video_path_3 = tempfile.mktemp(suffix='.mp4')
temp_video_path_4 = tempfile.mktemp(suffix='.mp4')
plot_feature_video(
image_feats["image_feats"].cpu(),
audio_feats['audio_feats'].cpu(),
frames_to_plot,
audio,
info["video_fps"],
sample_rate,
temp_video_path_3,
temp_video_path_4,
)
# return temp_video_path_1, temp_video_path_2, temp_video_path_3, temp_video_path_4
return temp_video_path_1, temp_video_path_2, temp_video_path_3
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("## Visualizing Sound and Language with DenseAV")
gr.Markdown(
"This demo allows you to explore the inner attention maps of DenseAV's dense multi-head contrastive operator.")
with gr.Row():
with gr.Column(scale=1):
model_option.render()
with gr.Column(scale=3):
video_input.render()
with gr.Row():
submit_button = gr.Button("Submit")
with gr.Row():
gr.Examples(
examples=[
[join(sample_videos_dir, "puppies.mp4"), "sound_and_language"],
[join(sample_videos_dir, "peppers.mp4"), "language"],
[join(sample_videos_dir, "elephant2.mp4"), "language"],
[join(sample_videos_dir, "boat.mp4"), "language"]
],
inputs=[video_input, model_option]
)
with gr.Row():
video_output1.render()
video_output2.render()
video_output3.render()
submit_button.click(fn=process_video, inputs=[video_input, model_option],
outputs=[video_output1, video_output2, video_output3])
if mode == "local":
demo.launch(server_name="0.0.0.0", server_port=6006, debug=True)
else:
demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|