ChronoWeave / app.py
mgbam's picture
Update app.py
a580b91 verified
# Copyright 2025 Google LLC.
# Based on work by Yousif Ahmed.
# Concept: ChronoWeave – Branching Narrative Generation
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at: https://www.apache.org/licenses/LICENSE-2.0
import streamlit as st
import google.generativeai as genai
import os
import json
import numpy as np
from io import BytesIO
import time
import wave
import contextlib
import asyncio
import uuid # For unique identifiers
import shutil # For directory operations
import logging
# Image handling
from PIL import Image
# Pydantic for data validation
from pydantic import BaseModel, Field, ValidationError, field_validator, model_validator
from typing import List, Optional, Dict, Any
# Video and audio processing
from moviepy.editor import ImageClip, AudioFileClip, concatenate_videoclips
# Type hints
import typing_extensions as typing
# Async support
import nest_asyncio
nest_asyncio.apply()
# Import Vertex AI SDK and Google credentials support
import vertexai
from vertexai.preview.vision_models import ImageGenerationModel
from google.oauth2 import service_account
# Import gTTS for audio generation
from gtts import gTTS
# --- Logging Setup ---
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# --- App Configuration ---
st.set_page_config(page_title="ChronoWeave", layout="wide", initial_sidebar_state="expanded")
st.title("πŸŒ€ ChronoWeave: Advanced Branching Narrative Generator")
st.markdown("""
Generate multiple, branching story timelines from a single theme using AI, complete with images and narration.
*Based on the work by Yousif Ahmed. Copyright 2025 Google LLC.*
""")
# --- Constants ---
TEXT_MODEL_ID = "models/gemini-1.5-flash"
AUDIO_MODEL_ID = "models/gemini-1.5-flash"
AUDIO_SAMPLING_RATE = 24000
IMAGE_MODEL_ID = "imagen-3.0-generate-002" # Vertex AI Imagen model identifier
DEFAULT_ASPECT_RATIO = "1:1"
VIDEO_FPS = 24
VIDEO_CODEC = "libx264"
AUDIO_CODEC = "aac"
TEMP_DIR_BASE = ".chrono_temp"
# --- Secrets and Environment Variables ---
# Load GOOGLE_API_KEY
try:
GOOGLE_API_KEY = st.secrets["GOOGLE_API_KEY"]
logger.info("Google API Key loaded from Streamlit secrets.")
except KeyError:
GOOGLE_API_KEY = os.environ.get('GOOGLE_API_KEY')
if GOOGLE_API_KEY:
logger.info("Google API Key loaded from environment variable.")
else:
st.error("🚨 **Google API Key Not Found!** Please configure it.", icon="🚨")
st.stop()
# Load PROJECT_ID and LOCATION
PROJECT_ID = st.secrets.get("PROJECT_ID") or os.environ.get("PROJECT_ID")
LOCATION = st.secrets.get("LOCATION") or os.environ.get("LOCATION", "us-central1")
if not PROJECT_ID:
st.error("🚨 **PROJECT_ID not set!** Please add PROJECT_ID to your secrets.", icon="🚨")
st.stop()
# Load and verify SERVICE_ACCOUNT_JSON
service_account_json = os.environ.get("SERVICE_ACCOUNT_JSON", "").strip()
if not service_account_json:
st.error("🚨 **SERVICE_ACCOUNT_JSON is missing or empty!** Please add your service account JSON to your secrets.", icon="🚨")
st.stop()
try:
service_account_info = json.loads(service_account_json)
credentials = service_account.Credentials.from_service_account_info(service_account_info)
logger.info("Service account credentials loaded successfully.")
except Exception as e:
st.error(f"🚨 Failed to load service account JSON: {e}", icon="🚨")
st.stop()
# Initialize Vertex AI with service account credentials
vertexai.init(project=PROJECT_ID, location=LOCATION, credentials=credentials)
# --- Initialize Google Clients for Text and Audio ---
try:
genai.configure(api_key=GOOGLE_API_KEY)
logger.info("Configured google-generativeai with API key.")
client_standard = genai.GenerativeModel(TEXT_MODEL_ID)
logger.info(f"Initialized text/JSON model handle: {TEXT_MODEL_ID}.")
live_model = genai.GenerativeModel(AUDIO_MODEL_ID)
logger.info(f"Initialized audio model handle: {AUDIO_MODEL_ID}.")
except AttributeError as ae:
logger.exception("AttributeError during Client Init.")
st.error(f"🚨 Init Error: {ae}. Update library?", icon="🚨")
st.stop()
except Exception as e:
logger.exception("Failed to initialize Google Clients/Models.")
st.error(f"🚨 Failed Init: {e}", icon="🚨")
st.stop()
# --- Define Pydantic Schemas ---
class StorySegment(BaseModel):
scene_id: int = Field(..., ge=0)
image_prompt: str = Field(..., min_length=10, max_length=250)
audio_text: str = Field(..., min_length=5, max_length=150)
character_description: str = Field(..., max_length=250)
timeline_visual_modifier: Optional[str] = Field(None, max_length=50)
@field_validator('image_prompt')
@classmethod
def image_prompt_no_humans(cls, v: str) -> str:
if any(w in v.lower() for w in ["person", "people", "human", "man", "woman", "boy", "girl", "child"]):
logger.warning(f"Prompt '{v[:50]}...' may contain humans.")
return v
class Timeline(BaseModel):
timeline_id: int = Field(..., ge=0)
divergence_reason: str = Field(..., min_length=5)
segments: List[StorySegment] = Field(..., min_items=1)
class ChronoWeaveResponse(BaseModel):
core_theme: str = Field(..., min_length=5)
timelines: List[Timeline] = Field(..., min_items=1)
total_scenes_per_timeline: int = Field(..., gt=0)
@model_validator(mode='after')
def check_timeline_segment_count(self) -> 'ChronoWeaveResponse':
expected = self.total_scenes_per_timeline
for i, t in enumerate(self.timelines):
if len(t.segments) != expected:
raise ValueError(f"Timeline {i} ID {t.timeline_id}: Expected {expected}, found {len(t.segments)}.")
return self
# --- Helper Functions ---
@contextlib.contextmanager
def wave_file_writer(filename: str, channels: int = 1, rate: int = AUDIO_SAMPLING_RATE, sample_width: int = 2):
"""Context manager to safely write WAV files."""
wf = None
try:
wf = wave.open(filename, "wb")
wf.setnchannels(channels)
wf.setsampwidth(sample_width)
wf.setframerate(rate)
yield wf
except Exception as e:
logger.error(f"Error opening/configuring wave file {filename}: {e}")
raise
finally:
if wf:
try:
wf.close()
except Exception as e_close:
logger.error(f"Error closing wave file {filename}: {e_close}")
# --- Audio Generation using gTTS ---
async def generate_audio_live_async(api_text: str, output_filename: str, voice: Optional[str] = None) -> Optional[str]:
"""
Generates audio using gTTS (Google Text-to-Speech).
Saves an MP3 file; MoviePy supports MP3 playback.
"""
task_id = os.path.basename(output_filename).split('.')[0]
logger.info(f"πŸŽ™οΈ [{task_id}] Generating audio via gTTS for text: '{api_text[:60]}...'")
try:
tts = gTTS(text=api_text, lang="en")
mp3_filename = output_filename.replace(".wav", ".mp3")
tts.save(mp3_filename)
logger.info(f"βœ… [{task_id}] Audio saved: {os.path.basename(mp3_filename)}")
return mp3_filename
except Exception as e:
error_str = str(e)
if "429" in error_str:
st.error(f"Audio generation for {task_id} failed: 429 Too Many Requests from TTS API. Please try again later.", icon="πŸ”Š")
else:
st.error(f"Audio generation for {task_id} failed: {e}", icon="πŸ”Š")
logger.exception(f"❌ [{task_id}] Audio generation error: {e}")
return None
def generate_story_sequence_chrono(theme: str, num_scenes: int, num_timelines: int, divergence_prompt: str = "") -> Optional[ChronoWeaveResponse]:
"""Generates branching story sequences using Gemini structured output and validates with Pydantic."""
st.info(f"πŸ“š Generating {num_timelines} timeline(s) x {num_scenes} scenes for: '{theme}'...")
logger.info(f"Requesting story structure: Theme='{theme}', Timelines={num_timelines}, Scenes={num_scenes}")
divergence_instruction = (
f"Introduce clear points of divergence between timelines, after first scene if possible. "
f"Hint: '{divergence_prompt}'. State divergence reason clearly. **For timeline_id 0, use 'Initial path' or 'Baseline scenario'.**"
)
prompt = f"""Act as narrative designer. Create story for theme: "{theme}". Instructions:
1. Exactly **{num_timelines}** timelines.
2. Each timeline exactly **{num_scenes}** scenes.
3. **NO humans/humanoids**; focus on animals, fantasy creatures, animated objects, nature.
4. {divergence_instruction}.
5. Style: **'Simple, friendly kids animation, bright colors, rounded shapes'**, unless `timeline_visual_modifier` alters.
6. `audio_text`: single concise sentence (max 30 words).
7. `image_prompt`: descriptive, concise (target 15-35 words MAX). Focus on scene elements. **AVOID repeating general style**.
8. `character_description`: VERY brief (name, features). Target < 20 words.
Output: ONLY valid JSON object adhering to schema. No text before/after.
JSON Schema: ```json
{json.dumps(ChronoWeaveResponse.model_json_schema(), indent=2)}
```"""
try:
response = client_standard.generate_content(
contents=prompt,
generation_config=genai.types.GenerationConfig(
response_mime_type="application/json", temperature=0.7
)
)
try:
raw_data = json.loads(response.text)
except json.JSONDecodeError as json_err:
logger.error(f"Failed JSON decode: {json_err}\nResponse:\n{response.text}")
st.error(f"🚨 Failed parse story: {json_err}", icon="πŸ“„")
st.text_area("Problem Response:", response.text, height=150)
return None
except Exception as e:
logger.error(f"Error processing text: {e}")
st.error(f"🚨 Error processing AI response: {e}", icon="πŸ“„")
return None
try:
validated_data = ChronoWeaveResponse.model_validate(raw_data)
logger.info("βœ… Story structure OK!")
st.success("βœ… Story structure OK!")
return validated_data
except ValidationError as val_err:
logger.error(f"JSON validation failed: {val_err}\nData:\n{json.dumps(raw_data, indent=2)}")
st.error(f"🚨 Gen structure invalid: {val_err}", icon="🧬")
st.json(raw_data)
return None
except genai.types.generation_types.BlockedPromptException as bpe:
logger.error(f"Story gen blocked: {bpe}")
st.error("🚨 Story prompt blocked.", icon="🚫")
return None
except Exception as e:
logger.exception("Error during story gen:")
st.error(f"🚨 Story gen error: {e}", icon="πŸ’₯")
return None
def generate_image_imagen(prompt: str, aspect_ratio: str = "1:1", task_id: str = "IMG") -> Optional[Image.Image]:
"""
Generates an image using Vertex AI's Imagen model via the Vertex AI preview API.
Loads the pretrained Imagen model and attempts to generate an image.
If a quota exceeded error occurs, it advises you to request a quota increase.
"""
logger.info(f"πŸ–ΌοΈ [{task_id}] Requesting image: '{prompt[:70]}...' (Aspect: {aspect_ratio})")
try:
generation_model = ImageGenerationModel.from_pretrained(IMAGE_MODEL_ID)
images = generation_model.generate_images(
prompt=prompt,
number_of_images=1,
aspect_ratio=aspect_ratio,
negative_prompt="",
person_generation="",
safety_filter_level="",
add_watermark=True,
)
image = images[0]._pil_image
logger.info(f"βœ… [{task_id}] Image generated successfully.")
return image
except Exception as e:
error_str = str(e)
if "Quota exceeded" in error_str:
error_msg = (
"Quota exceeded for image generation requests. "
"Please submit a quota increase request via the Vertex AI console: https://cloud.google.com/vertex-ai/docs/generative-ai/quotas-genai"
)
else:
error_msg = f"Image generation for {task_id} failed: {e}"
logger.exception(f"❌ [{task_id}] {error_msg}")
st.error(error_msg, icon="πŸ–ΌοΈ")
return None
# --- Streamlit UI Elements ---
st.sidebar.header("βš™οΈ Configuration")
if GOOGLE_API_KEY:
st.sidebar.success("Google API Key Loaded", icon="βœ…")
else:
st.sidebar.error("Google API Key Missing!", icon="🚨")
theme = st.sidebar.text_input("πŸ“– Story Theme:", "A curious squirrel finds a mysterious, glowing acorn")
num_scenes = st.sidebar.slider("🎬 Scenes per Timeline:", min_value=2, max_value=7, value=3)
num_timelines = st.sidebar.slider("🌿 Number of Timelines:", min_value=1, max_value=4, value=2)
divergence_prompt = st.sidebar.text_input("↔️ Divergence Hint (Optional):", placeholder="e.g., What if a bird tried to steal it?")
st.sidebar.subheader("🎨 Visual & Audio Settings")
aspect_ratio = st.sidebar.selectbox("πŸ–ΌοΈ Image Aspect Ratio:", ["1:1", "16:9", "9:16"], index=0)
audio_voice = None
generate_button = st.sidebar.button("✨ Generate ChronoWeave ✨", type="primary", disabled=(not GOOGLE_API_KEY), use_container_width=True)
st.sidebar.markdown("---")
st.sidebar.info("⏳ Generation can take minutes.")
st.sidebar.markdown(f"<small>Txt:{TEXT_MODEL_ID}, Img:{IMAGE_MODEL_ID}, Aud:{AUDIO_MODEL_ID}</small>", unsafe_allow_html=True)
# --- Main Logic ---
if generate_button:
if not theme:
st.error("Please enter a story theme.", icon="πŸ‘ˆ")
else:
run_id = str(uuid.uuid4()).split('-')[0]
temp_dir = os.path.join(TEMP_DIR_BASE, f"run_{run_id}")
try:
os.makedirs(temp_dir, exist_ok=True)
logger.info(f"Created temp dir: {temp_dir}")
except OSError as e:
st.error(f"🚨 Failed to create temp dir {temp_dir}: {e}", icon="πŸ“‚")
st.stop()
final_video_paths, generation_errors = {}, {}
chrono_response: Optional[ChronoWeaveResponse] = None
with st.spinner("Generating narrative structure... πŸ€”"):
chrono_response = generate_story_sequence_chrono(theme, num_scenes, num_timelines, divergence_prompt)
if chrono_response:
overall_start_time = time.time()
all_timelines_successful = True
with st.status("Generating assets and composing videos...", expanded=True) as status:
for timeline_index, timeline in enumerate(chrono_response.timelines):
timeline_id, divergence, segments = timeline.timeline_id, timeline.divergence_reason, timeline.segments
timeline_label = f"Timeline {timeline_id}"
st.subheader(f"Processing {timeline_label}: {divergence}")
logger.info(f"--- Processing {timeline_label} (Idx: {timeline_index}) ---")
generation_errors[timeline_id] = []
temp_image_files, temp_audio_files, video_clips = {}, {}, []
timeline_start_time = time.time()
scene_success_count = 0
for scene_index, segment in enumerate(segments):
scene_id = segment.scene_id
task_id = f"T{timeline_id}_S{scene_id}"
status.update(label=f"Processing {timeline_label}, Scene {scene_id + 1}/{len(segments)}...")
st.markdown(f"--- **Scene {scene_id + 1} ({task_id})** ---")
logger.info(f"Processing {timeline_label}, Scene {scene_id + 1}/{len(segments)}...")
scene_has_error = False
st.write(f"*Img Prompt:* {segment.image_prompt}" + (f" *(Mod: {segment.timeline_visual_modifier})*" if segment.timeline_visual_modifier else ""))
st.write(f"*Audio Text:* {segment.audio_text}")
# --- 2a. Image Generation ---
generated_image: Optional[Image.Image] = None
with st.spinner(f"[{task_id}] Generating image... 🎨"):
combined_prompt = segment.image_prompt
if segment.character_description:
combined_prompt += f" Featuring: {segment.character_description}"
if segment.timeline_visual_modifier:
combined_prompt += f" Style hint: {segment.timeline_visual_modifier}."
generated_image = generate_image_imagen(combined_prompt, aspect_ratio, task_id)
if generated_image:
image_path = os.path.join(temp_dir, f"{task_id}_image.png")
try:
generated_image.save(image_path)
temp_image_files[scene_id] = image_path
st.image(generated_image, width=180, caption=f"Scene {scene_id + 1}")
except Exception as e:
logger.error(f"❌ [{task_id}] Img save error: {e}")
st.error(f"Save image {task_id} failed.", icon="πŸ’Ύ")
scene_has_error = True
generation_errors[timeline_id].append(f"S{scene_id + 1}: Img save fail.")
else:
scene_has_error = True
generation_errors[timeline_id].append(f"S{scene_id + 1}: Img gen fail.")
continue
# --- 2b. Audio Generation ---
generated_audio_path: Optional[str] = None
if not scene_has_error:
with st.spinner(f"[{task_id}] Generating audio... πŸ”Š"):
audio_path_temp = os.path.join(temp_dir, f"{task_id}_audio.wav")
try:
generated_audio_path = asyncio.run(generate_audio_live_async(segment.audio_text, audio_path_temp, audio_voice))
except RuntimeError as e:
logger.error(f"❌ [{task_id}] Asyncio error: {e}")
st.error(f"Asyncio audio error {task_id}: {e}", icon="⚑")
scene_has_error = True
generation_errors[timeline_id].append(f"S{scene_id + 1}: Audio async err.")
except Exception as e:
logger.exception(f"❌ [{task_id}] Audio error: {e}")
st.error(f"Audio error {task_id}: {e}", icon="πŸ’₯")
scene_has_error = True
generation_errors[timeline_id].append(f"S{scene_id + 1}: Audio gen err.")
if generated_audio_path:
temp_audio_files[scene_id] = generated_audio_path
try:
with open(generated_audio_path, 'rb') as ap:
st.audio(ap.read(), format='audio/mp3')
except Exception as e:
logger.warning(f"⚠️ [{task_id}] Audio preview error: {e}")
else:
scene_has_error = True
generation_errors[timeline_id].append(f"S{scene_id + 1}: Audio gen fail.")
continue
# --- 2c. Create Video Clip ---
if not scene_has_error and scene_id in temp_image_files and scene_id in temp_audio_files:
st.write(f"🎬 Creating clip S{scene_id + 1}...")
img_path, aud_path = temp_image_files[scene_id], temp_audio_files[scene_id]
audio_clip_instance, image_clip_instance, composite_clip = None, None, None
try:
if not os.path.exists(img_path):
raise FileNotFoundError(f"Img missing: {img_path}")
if not os.path.exists(aud_path):
raise FileNotFoundError(f"Aud missing: {aud_path}")
audio_clip_instance = AudioFileClip(aud_path)
np_image = np.array(Image.open(img_path))
image_clip_instance = ImageClip(np_image).set_duration(audio_clip_instance.duration)
composite_clip = image_clip_instance.set_audio(audio_clip_instance)
video_clips.append(composite_clip)
logger.info(f"βœ… [{task_id}] Clip created (Dur: {audio_clip_instance.duration:.2f}s).")
st.write(f"βœ… Clip created (Dur: {audio_clip_instance.duration:.2f}s).")
scene_success_count += 1
except Exception as e:
logger.exception(f"❌ [{task_id}] Failed clip creation: {e}")
st.error(f"Failed clip {task_id}: {e}", icon="🎬")
scene_has_error = True
generation_errors[timeline_id].append(f"S{scene_id + 1}: Clip fail.")
finally:
if audio_clip_instance:
audio_clip_instance.close()
if image_clip_instance:
image_clip_instance.close()
# --- 2d. Assemble Timeline Video ---
timeline_duration = time.time() - timeline_start_time
if video_clips and scene_success_count == len(segments):
status.update(label=f"Composing video {timeline_label}...")
st.write(f"🎞️ Assembling video {timeline_label}...")
logger.info(f"🎞️ Assembling video {timeline_label}...")
output_filename = os.path.join(temp_dir, f"timeline_{timeline_id}_final.mp4")
final_timeline_video = None
try:
final_timeline_video = concatenate_videoclips(video_clips, method="compose")
final_timeline_video.write_videofile(
output_filename, fps=VIDEO_FPS, codec=VIDEO_CODEC, audio_codec=AUDIO_CODEC, logger=None
)
final_video_paths[timeline_id] = output_filename
logger.info(f"βœ… [{timeline_label}] Video saved: {os.path.basename(output_filename)}")
st.success(f"βœ… Video {timeline_label} completed in {timeline_duration:.2f}s.")
except Exception as e:
logger.exception(f"❌ [{timeline_label}] Video assembly failed: {e}")
st.error(f"Assemble video {timeline_label} failed: {e}", icon="πŸ“Ό")
all_timelines_successful = False
generation_errors[timeline_id].append(f"T{timeline_id}: Assembly fail.")
finally:
logger.debug(f"[{timeline_label}] Closing {len(video_clips)} clips...")
for i, clip in enumerate(video_clips):
try:
clip.close()
except Exception as e_close:
logger.warning(f"⚠️ [{timeline_label}] Clip close err {i}: {e_close}")
if final_timeline_video:
try:
final_timeline_video.close()
except Exception as e_close_final:
logger.warning(f"⚠️ [{timeline_label}] Final vid close err: {e_close_final}")
elif not video_clips:
logger.warning(f"[{timeline_label}] No clips. Skip assembly.")
st.warning(f"No scenes for {timeline_label}. No video.", icon="🚫")
all_timelines_successful = False
else:
error_count = len(generation_errors[timeline_id])
logger.warning(f"[{timeline_label}] {error_count} scene err(s). Skip assembly.")
st.warning(f"{timeline_label}: {error_count} err(s). Video not assembled.", icon="⚠️")
all_timelines_successful = False
if generation_errors[timeline_id]:
logger.error(f"Errors {timeline_label}: {generation_errors[timeline_id]}")
# --- End of Timelines Loop ---
overall_duration = time.time() - overall_start_time
if all_timelines_successful and final_video_paths:
status_msg = f"Complete! ({len(final_video_paths)} videos in {overall_duration:.2f}s)"
status.update(label=status_msg, state="complete", expanded=False)
logger.info(status_msg)
elif final_video_paths:
status_msg = f"Partially Complete ({len(final_video_paths)} videos, errors). {overall_duration:.2f}s"
status.update(label=status_msg, state="warning", expanded=True)
logger.warning(status_msg)
else:
status_msg = f"Failed. No videos. {overall_duration:.2f}s"
status.update(label=status_msg, state="error", expanded=True)
logger.error(status_msg)
# --- 3. Display Results ---
st.header("🎬 Generated Timelines")
if final_video_paths:
sorted_timeline_ids = sorted(final_video_paths.keys())
num_cols = min(len(sorted_timeline_ids), 3)
cols = st.columns(num_cols)
for idx, timeline_id in enumerate(sorted_timeline_ids):
col = cols[idx % num_cols]
video_path = final_video_paths[timeline_id]
timeline_data = next((t for t in chrono_response.timelines if t.timeline_id == timeline_id), None)
reason = timeline_data.divergence_reason if timeline_data else "Unknown"
with col:
st.subheader(f"Timeline {timeline_id}")
st.caption(f"Divergence: {reason}")
try:
with open(video_path, 'rb') as vf:
video_bytes = vf.read()
st.video(video_bytes)
logger.info(f"Displaying T{timeline_id}")
st.download_button(f"Download T{timeline_id}", video_bytes, f"timeline_{timeline_id}.mp4", "video/mp4", key=f"dl_{timeline_id}")
if generation_errors.get(timeline_id):
scene_errors = [err for err in generation_errors[timeline_id] if not err.startswith(f"T{timeline_id}:")]
if scene_errors:
with st.expander(f"⚠️ View {len(scene_errors)} Scene Issues"):
for err in scene_errors:
st.warning(f"- {err}")
except FileNotFoundError:
logger.error(f"Video missing: {video_path}")
st.error(f"Error: Video missing T{timeline_id}.", icon="🚨")
except Exception as e:
logger.exception(f"Display error {video_path}: {e}")
st.error(f"Display error T{timeline_id}: {e}", icon="🚨")
else:
st.warning("No final videos were successfully generated.")
st.subheader("Summary of Generation Issues")
has_errors = any(generation_errors.values())
if has_errors:
with st.expander("View All Errors", expanded=True):
for tid, errors in generation_errors.items():
if errors:
st.error(f"**Timeline {tid}:**")
for msg in errors:
st.error(f" - {msg}")
else:
st.info("No generation errors recorded.")
# --- 4. Cleanup ---
st.info(f"Attempting cleanup: {temp_dir}")
try:
shutil.rmtree(temp_dir)
logger.info(f"βœ… Temp dir removed: {temp_dir}")
st.success("βœ… Temp files cleaned.")
except Exception as e:
logger.error(f"⚠️ Failed to remove temp dir {temp_dir}: {e}")
st.warning(f"Could not remove temp files: {temp_dir}.", icon="⚠️")
elif not chrono_response:
logger.error("Story gen/validation failed.")
else:
st.error("Unexpected issue post-gen.", icon="πŸ›‘")
logger.error("Chrono_response truthy but invalid.")
else:
st.info("Configure settings and click '✨ Generate ChronoWeave ✨' to start.")