Spaces:
Running
Running
# Copyright 2025 Google LLC. | |
# Based on work by Yousif Ahmed. | |
# Concept: ChronoWeave β Branching Narrative Generation | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at: https://www.apache.org/licenses/LICENSE-2.0 | |
import streamlit as st | |
import google.generativeai as genai | |
import os | |
import json | |
import numpy as np | |
from io import BytesIO | |
import time | |
import wave | |
import contextlib | |
import asyncio | |
import uuid # For unique identifiers | |
import shutil # For directory operations | |
import logging | |
# Image handling | |
from PIL import Image | |
# Pydantic for data validation | |
from pydantic import BaseModel, Field, ValidationError, field_validator, model_validator | |
from typing import List, Optional, Dict, Any | |
# Video and audio processing | |
from moviepy.editor import ImageClip, AudioFileClip, concatenate_videoclips | |
# Type hints | |
import typing_extensions as typing | |
# Async support | |
import nest_asyncio | |
nest_asyncio.apply() | |
# Import Vertex AI SDK and Google credentials support | |
import vertexai | |
from vertexai.preview.vision_models import ImageGenerationModel | |
from google.oauth2 import service_account | |
# Import gTTS for audio generation | |
from gtts import gTTS | |
# --- Logging Setup --- | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - %(levelname)s - %(message)s' | |
) | |
logger = logging.getLogger(__name__) | |
# --- App Configuration --- | |
st.set_page_config(page_title="ChronoWeave", layout="wide", initial_sidebar_state="expanded") | |
st.title("π ChronoWeave: Advanced Branching Narrative Generator") | |
st.markdown(""" | |
Generate multiple, branching story timelines from a single theme using AI, complete with images and narration. | |
*Based on the work by Yousif Ahmed. Copyright 2025 Google LLC.* | |
""") | |
# --- Constants --- | |
TEXT_MODEL_ID = "models/gemini-1.5-flash" | |
AUDIO_MODEL_ID = "models/gemini-1.5-flash" | |
AUDIO_SAMPLING_RATE = 24000 | |
IMAGE_MODEL_ID = "imagen-3.0-generate-002" # Vertex AI Imagen model identifier | |
DEFAULT_ASPECT_RATIO = "1:1" | |
VIDEO_FPS = 24 | |
VIDEO_CODEC = "libx264" | |
AUDIO_CODEC = "aac" | |
TEMP_DIR_BASE = ".chrono_temp" | |
# --- Secrets and Environment Variables --- | |
# Load GOOGLE_API_KEY | |
try: | |
GOOGLE_API_KEY = st.secrets["GOOGLE_API_KEY"] | |
logger.info("Google API Key loaded from Streamlit secrets.") | |
except KeyError: | |
GOOGLE_API_KEY = os.environ.get('GOOGLE_API_KEY') | |
if GOOGLE_API_KEY: | |
logger.info("Google API Key loaded from environment variable.") | |
else: | |
st.error("π¨ **Google API Key Not Found!** Please configure it.", icon="π¨") | |
st.stop() | |
# Load PROJECT_ID and LOCATION | |
PROJECT_ID = st.secrets.get("PROJECT_ID") or os.environ.get("PROJECT_ID") | |
LOCATION = st.secrets.get("LOCATION") or os.environ.get("LOCATION", "us-central1") | |
if not PROJECT_ID: | |
st.error("π¨ **PROJECT_ID not set!** Please add PROJECT_ID to your secrets.", icon="π¨") | |
st.stop() | |
# Load and verify SERVICE_ACCOUNT_JSON | |
service_account_json = os.environ.get("SERVICE_ACCOUNT_JSON", "").strip() | |
if not service_account_json: | |
st.error("π¨ **SERVICE_ACCOUNT_JSON is missing or empty!** Please add your service account JSON to your secrets.", icon="π¨") | |
st.stop() | |
try: | |
service_account_info = json.loads(service_account_json) | |
credentials = service_account.Credentials.from_service_account_info(service_account_info) | |
logger.info("Service account credentials loaded successfully.") | |
except Exception as e: | |
st.error(f"π¨ Failed to load service account JSON: {e}", icon="π¨") | |
st.stop() | |
# Initialize Vertex AI with service account credentials | |
vertexai.init(project=PROJECT_ID, location=LOCATION, credentials=credentials) | |
# --- Initialize Google Clients for Text and Audio --- | |
try: | |
genai.configure(api_key=GOOGLE_API_KEY) | |
logger.info("Configured google-generativeai with API key.") | |
client_standard = genai.GenerativeModel(TEXT_MODEL_ID) | |
logger.info(f"Initialized text/JSON model handle: {TEXT_MODEL_ID}.") | |
live_model = genai.GenerativeModel(AUDIO_MODEL_ID) | |
logger.info(f"Initialized audio model handle: {AUDIO_MODEL_ID}.") | |
except AttributeError as ae: | |
logger.exception("AttributeError during Client Init.") | |
st.error(f"π¨ Init Error: {ae}. Update library?", icon="π¨") | |
st.stop() | |
except Exception as e: | |
logger.exception("Failed to initialize Google Clients/Models.") | |
st.error(f"π¨ Failed Init: {e}", icon="π¨") | |
st.stop() | |
# --- Define Pydantic Schemas --- | |
class StorySegment(BaseModel): | |
scene_id: int = Field(..., ge=0) | |
image_prompt: str = Field(..., min_length=10, max_length=250) | |
audio_text: str = Field(..., min_length=5, max_length=150) | |
character_description: str = Field(..., max_length=250) | |
timeline_visual_modifier: Optional[str] = Field(None, max_length=50) | |
def image_prompt_no_humans(cls, v: str) -> str: | |
if any(w in v.lower() for w in ["person", "people", "human", "man", "woman", "boy", "girl", "child"]): | |
logger.warning(f"Prompt '{v[:50]}...' may contain humans.") | |
return v | |
class Timeline(BaseModel): | |
timeline_id: int = Field(..., ge=0) | |
divergence_reason: str = Field(..., min_length=5) | |
segments: List[StorySegment] = Field(..., min_items=1) | |
class ChronoWeaveResponse(BaseModel): | |
core_theme: str = Field(..., min_length=5) | |
timelines: List[Timeline] = Field(..., min_items=1) | |
total_scenes_per_timeline: int = Field(..., gt=0) | |
def check_timeline_segment_count(self) -> 'ChronoWeaveResponse': | |
expected = self.total_scenes_per_timeline | |
for i, t in enumerate(self.timelines): | |
if len(t.segments) != expected: | |
raise ValueError(f"Timeline {i} ID {t.timeline_id}: Expected {expected}, found {len(t.segments)}.") | |
return self | |
# --- Helper Functions --- | |
def wave_file_writer(filename: str, channels: int = 1, rate: int = AUDIO_SAMPLING_RATE, sample_width: int = 2): | |
"""Context manager to safely write WAV files.""" | |
wf = None | |
try: | |
wf = wave.open(filename, "wb") | |
wf.setnchannels(channels) | |
wf.setsampwidth(sample_width) | |
wf.setframerate(rate) | |
yield wf | |
except Exception as e: | |
logger.error(f"Error opening/configuring wave file {filename}: {e}") | |
raise | |
finally: | |
if wf: | |
try: | |
wf.close() | |
except Exception as e_close: | |
logger.error(f"Error closing wave file {filename}: {e_close}") | |
# --- Audio Generation using gTTS --- | |
async def generate_audio_live_async(api_text: str, output_filename: str, voice: Optional[str] = None) -> Optional[str]: | |
""" | |
Generates audio using gTTS (Google Text-to-Speech). | |
Saves an MP3 file; MoviePy supports MP3 playback. | |
""" | |
task_id = os.path.basename(output_filename).split('.')[0] | |
logger.info(f"ποΈ [{task_id}] Generating audio via gTTS for text: '{api_text[:60]}...'") | |
try: | |
tts = gTTS(text=api_text, lang="en") | |
mp3_filename = output_filename.replace(".wav", ".mp3") | |
tts.save(mp3_filename) | |
logger.info(f"β [{task_id}] Audio saved: {os.path.basename(mp3_filename)}") | |
return mp3_filename | |
except Exception as e: | |
error_str = str(e) | |
if "429" in error_str: | |
st.error(f"Audio generation for {task_id} failed: 429 Too Many Requests from TTS API. Please try again later.", icon="π") | |
else: | |
st.error(f"Audio generation for {task_id} failed: {e}", icon="π") | |
logger.exception(f"β [{task_id}] Audio generation error: {e}") | |
return None | |
def generate_story_sequence_chrono(theme: str, num_scenes: int, num_timelines: int, divergence_prompt: str = "") -> Optional[ChronoWeaveResponse]: | |
"""Generates branching story sequences using Gemini structured output and validates with Pydantic.""" | |
st.info(f"π Generating {num_timelines} timeline(s) x {num_scenes} scenes for: '{theme}'...") | |
logger.info(f"Requesting story structure: Theme='{theme}', Timelines={num_timelines}, Scenes={num_scenes}") | |
divergence_instruction = ( | |
f"Introduce clear points of divergence between timelines, after first scene if possible. " | |
f"Hint: '{divergence_prompt}'. State divergence reason clearly. **For timeline_id 0, use 'Initial path' or 'Baseline scenario'.**" | |
) | |
prompt = f"""Act as narrative designer. Create story for theme: "{theme}". Instructions: | |
1. Exactly **{num_timelines}** timelines. | |
2. Each timeline exactly **{num_scenes}** scenes. | |
3. **NO humans/humanoids**; focus on animals, fantasy creatures, animated objects, nature. | |
4. {divergence_instruction}. | |
5. Style: **'Simple, friendly kids animation, bright colors, rounded shapes'**, unless `timeline_visual_modifier` alters. | |
6. `audio_text`: single concise sentence (max 30 words). | |
7. `image_prompt`: descriptive, concise (target 15-35 words MAX). Focus on scene elements. **AVOID repeating general style**. | |
8. `character_description`: VERY brief (name, features). Target < 20 words. | |
Output: ONLY valid JSON object adhering to schema. No text before/after. | |
JSON Schema: ```json | |
{json.dumps(ChronoWeaveResponse.model_json_schema(), indent=2)} | |
```""" | |
try: | |
response = client_standard.generate_content( | |
contents=prompt, | |
generation_config=genai.types.GenerationConfig( | |
response_mime_type="application/json", temperature=0.7 | |
) | |
) | |
try: | |
raw_data = json.loads(response.text) | |
except json.JSONDecodeError as json_err: | |
logger.error(f"Failed JSON decode: {json_err}\nResponse:\n{response.text}") | |
st.error(f"π¨ Failed parse story: {json_err}", icon="π") | |
st.text_area("Problem Response:", response.text, height=150) | |
return None | |
except Exception as e: | |
logger.error(f"Error processing text: {e}") | |
st.error(f"π¨ Error processing AI response: {e}", icon="π") | |
return None | |
try: | |
validated_data = ChronoWeaveResponse.model_validate(raw_data) | |
logger.info("β Story structure OK!") | |
st.success("β Story structure OK!") | |
return validated_data | |
except ValidationError as val_err: | |
logger.error(f"JSON validation failed: {val_err}\nData:\n{json.dumps(raw_data, indent=2)}") | |
st.error(f"π¨ Gen structure invalid: {val_err}", icon="π§¬") | |
st.json(raw_data) | |
return None | |
except genai.types.generation_types.BlockedPromptException as bpe: | |
logger.error(f"Story gen blocked: {bpe}") | |
st.error("π¨ Story prompt blocked.", icon="π«") | |
return None | |
except Exception as e: | |
logger.exception("Error during story gen:") | |
st.error(f"π¨ Story gen error: {e}", icon="π₯") | |
return None | |
def generate_image_imagen(prompt: str, aspect_ratio: str = "1:1", task_id: str = "IMG") -> Optional[Image.Image]: | |
""" | |
Generates an image using Vertex AI's Imagen model via the Vertex AI preview API. | |
Loads the pretrained Imagen model and attempts to generate an image. | |
If a quota exceeded error occurs, it advises you to request a quota increase. | |
""" | |
logger.info(f"πΌοΈ [{task_id}] Requesting image: '{prompt[:70]}...' (Aspect: {aspect_ratio})") | |
try: | |
generation_model = ImageGenerationModel.from_pretrained(IMAGE_MODEL_ID) | |
images = generation_model.generate_images( | |
prompt=prompt, | |
number_of_images=1, | |
aspect_ratio=aspect_ratio, | |
negative_prompt="", | |
person_generation="", | |
safety_filter_level="", | |
add_watermark=True, | |
) | |
image = images[0]._pil_image | |
logger.info(f"β [{task_id}] Image generated successfully.") | |
return image | |
except Exception as e: | |
error_str = str(e) | |
if "Quota exceeded" in error_str: | |
error_msg = ( | |
"Quota exceeded for image generation requests. " | |
"Please submit a quota increase request via the Vertex AI console: https://cloud.google.com/vertex-ai/docs/generative-ai/quotas-genai" | |
) | |
else: | |
error_msg = f"Image generation for {task_id} failed: {e}" | |
logger.exception(f"β [{task_id}] {error_msg}") | |
st.error(error_msg, icon="πΌοΈ") | |
return None | |
# --- Streamlit UI Elements --- | |
st.sidebar.header("βοΈ Configuration") | |
if GOOGLE_API_KEY: | |
st.sidebar.success("Google API Key Loaded", icon="β ") | |
else: | |
st.sidebar.error("Google API Key Missing!", icon="π¨") | |
theme = st.sidebar.text_input("π Story Theme:", "A curious squirrel finds a mysterious, glowing acorn") | |
num_scenes = st.sidebar.slider("π¬ Scenes per Timeline:", min_value=2, max_value=7, value=3) | |
num_timelines = st.sidebar.slider("πΏ Number of Timelines:", min_value=1, max_value=4, value=2) | |
divergence_prompt = st.sidebar.text_input("βοΈ Divergence Hint (Optional):", placeholder="e.g., What if a bird tried to steal it?") | |
st.sidebar.subheader("π¨ Visual & Audio Settings") | |
aspect_ratio = st.sidebar.selectbox("πΌοΈ Image Aspect Ratio:", ["1:1", "16:9", "9:16"], index=0) | |
audio_voice = None | |
generate_button = st.sidebar.button("β¨ Generate ChronoWeave β¨", type="primary", disabled=(not GOOGLE_API_KEY), use_container_width=True) | |
st.sidebar.markdown("---") | |
st.sidebar.info("β³ Generation can take minutes.") | |
st.sidebar.markdown(f"<small>Txt:{TEXT_MODEL_ID}, Img:{IMAGE_MODEL_ID}, Aud:{AUDIO_MODEL_ID}</small>", unsafe_allow_html=True) | |
# --- Main Logic --- | |
if generate_button: | |
if not theme: | |
st.error("Please enter a story theme.", icon="π") | |
else: | |
run_id = str(uuid.uuid4()).split('-')[0] | |
temp_dir = os.path.join(TEMP_DIR_BASE, f"run_{run_id}") | |
try: | |
os.makedirs(temp_dir, exist_ok=True) | |
logger.info(f"Created temp dir: {temp_dir}") | |
except OSError as e: | |
st.error(f"π¨ Failed to create temp dir {temp_dir}: {e}", icon="π") | |
st.stop() | |
final_video_paths, generation_errors = {}, {} | |
chrono_response: Optional[ChronoWeaveResponse] = None | |
with st.spinner("Generating narrative structure... π€"): | |
chrono_response = generate_story_sequence_chrono(theme, num_scenes, num_timelines, divergence_prompt) | |
if chrono_response: | |
overall_start_time = time.time() | |
all_timelines_successful = True | |
with st.status("Generating assets and composing videos...", expanded=True) as status: | |
for timeline_index, timeline in enumerate(chrono_response.timelines): | |
timeline_id, divergence, segments = timeline.timeline_id, timeline.divergence_reason, timeline.segments | |
timeline_label = f"Timeline {timeline_id}" | |
st.subheader(f"Processing {timeline_label}: {divergence}") | |
logger.info(f"--- Processing {timeline_label} (Idx: {timeline_index}) ---") | |
generation_errors[timeline_id] = [] | |
temp_image_files, temp_audio_files, video_clips = {}, {}, [] | |
timeline_start_time = time.time() | |
scene_success_count = 0 | |
for scene_index, segment in enumerate(segments): | |
scene_id = segment.scene_id | |
task_id = f"T{timeline_id}_S{scene_id}" | |
status.update(label=f"Processing {timeline_label}, Scene {scene_id + 1}/{len(segments)}...") | |
st.markdown(f"--- **Scene {scene_id + 1} ({task_id})** ---") | |
logger.info(f"Processing {timeline_label}, Scene {scene_id + 1}/{len(segments)}...") | |
scene_has_error = False | |
st.write(f"*Img Prompt:* {segment.image_prompt}" + (f" *(Mod: {segment.timeline_visual_modifier})*" if segment.timeline_visual_modifier else "")) | |
st.write(f"*Audio Text:* {segment.audio_text}") | |
# --- 2a. Image Generation --- | |
generated_image: Optional[Image.Image] = None | |
with st.spinner(f"[{task_id}] Generating image... π¨"): | |
combined_prompt = segment.image_prompt | |
if segment.character_description: | |
combined_prompt += f" Featuring: {segment.character_description}" | |
if segment.timeline_visual_modifier: | |
combined_prompt += f" Style hint: {segment.timeline_visual_modifier}." | |
generated_image = generate_image_imagen(combined_prompt, aspect_ratio, task_id) | |
if generated_image: | |
image_path = os.path.join(temp_dir, f"{task_id}_image.png") | |
try: | |
generated_image.save(image_path) | |
temp_image_files[scene_id] = image_path | |
st.image(generated_image, width=180, caption=f"Scene {scene_id + 1}") | |
except Exception as e: | |
logger.error(f"β [{task_id}] Img save error: {e}") | |
st.error(f"Save image {task_id} failed.", icon="πΎ") | |
scene_has_error = True | |
generation_errors[timeline_id].append(f"S{scene_id + 1}: Img save fail.") | |
else: | |
scene_has_error = True | |
generation_errors[timeline_id].append(f"S{scene_id + 1}: Img gen fail.") | |
continue | |
# --- 2b. Audio Generation --- | |
generated_audio_path: Optional[str] = None | |
if not scene_has_error: | |
with st.spinner(f"[{task_id}] Generating audio... π"): | |
audio_path_temp = os.path.join(temp_dir, f"{task_id}_audio.wav") | |
try: | |
generated_audio_path = asyncio.run(generate_audio_live_async(segment.audio_text, audio_path_temp, audio_voice)) | |
except RuntimeError as e: | |
logger.error(f"β [{task_id}] Asyncio error: {e}") | |
st.error(f"Asyncio audio error {task_id}: {e}", icon="β‘") | |
scene_has_error = True | |
generation_errors[timeline_id].append(f"S{scene_id + 1}: Audio async err.") | |
except Exception as e: | |
logger.exception(f"β [{task_id}] Audio error: {e}") | |
st.error(f"Audio error {task_id}: {e}", icon="π₯") | |
scene_has_error = True | |
generation_errors[timeline_id].append(f"S{scene_id + 1}: Audio gen err.") | |
if generated_audio_path: | |
temp_audio_files[scene_id] = generated_audio_path | |
try: | |
with open(generated_audio_path, 'rb') as ap: | |
st.audio(ap.read(), format='audio/mp3') | |
except Exception as e: | |
logger.warning(f"β οΈ [{task_id}] Audio preview error: {e}") | |
else: | |
scene_has_error = True | |
generation_errors[timeline_id].append(f"S{scene_id + 1}: Audio gen fail.") | |
continue | |
# --- 2c. Create Video Clip --- | |
if not scene_has_error and scene_id in temp_image_files and scene_id in temp_audio_files: | |
st.write(f"π¬ Creating clip S{scene_id + 1}...") | |
img_path, aud_path = temp_image_files[scene_id], temp_audio_files[scene_id] | |
audio_clip_instance, image_clip_instance, composite_clip = None, None, None | |
try: | |
if not os.path.exists(img_path): | |
raise FileNotFoundError(f"Img missing: {img_path}") | |
if not os.path.exists(aud_path): | |
raise FileNotFoundError(f"Aud missing: {aud_path}") | |
audio_clip_instance = AudioFileClip(aud_path) | |
np_image = np.array(Image.open(img_path)) | |
image_clip_instance = ImageClip(np_image).set_duration(audio_clip_instance.duration) | |
composite_clip = image_clip_instance.set_audio(audio_clip_instance) | |
video_clips.append(composite_clip) | |
logger.info(f"β [{task_id}] Clip created (Dur: {audio_clip_instance.duration:.2f}s).") | |
st.write(f"β Clip created (Dur: {audio_clip_instance.duration:.2f}s).") | |
scene_success_count += 1 | |
except Exception as e: | |
logger.exception(f"β [{task_id}] Failed clip creation: {e}") | |
st.error(f"Failed clip {task_id}: {e}", icon="π¬") | |
scene_has_error = True | |
generation_errors[timeline_id].append(f"S{scene_id + 1}: Clip fail.") | |
finally: | |
if audio_clip_instance: | |
audio_clip_instance.close() | |
if image_clip_instance: | |
image_clip_instance.close() | |
# --- 2d. Assemble Timeline Video --- | |
timeline_duration = time.time() - timeline_start_time | |
if video_clips and scene_success_count == len(segments): | |
status.update(label=f"Composing video {timeline_label}...") | |
st.write(f"ποΈ Assembling video {timeline_label}...") | |
logger.info(f"ποΈ Assembling video {timeline_label}...") | |
output_filename = os.path.join(temp_dir, f"timeline_{timeline_id}_final.mp4") | |
final_timeline_video = None | |
try: | |
final_timeline_video = concatenate_videoclips(video_clips, method="compose") | |
final_timeline_video.write_videofile( | |
output_filename, fps=VIDEO_FPS, codec=VIDEO_CODEC, audio_codec=AUDIO_CODEC, logger=None | |
) | |
final_video_paths[timeline_id] = output_filename | |
logger.info(f"β [{timeline_label}] Video saved: {os.path.basename(output_filename)}") | |
st.success(f"β Video {timeline_label} completed in {timeline_duration:.2f}s.") | |
except Exception as e: | |
logger.exception(f"β [{timeline_label}] Video assembly failed: {e}") | |
st.error(f"Assemble video {timeline_label} failed: {e}", icon="πΌ") | |
all_timelines_successful = False | |
generation_errors[timeline_id].append(f"T{timeline_id}: Assembly fail.") | |
finally: | |
logger.debug(f"[{timeline_label}] Closing {len(video_clips)} clips...") | |
for i, clip in enumerate(video_clips): | |
try: | |
clip.close() | |
except Exception as e_close: | |
logger.warning(f"β οΈ [{timeline_label}] Clip close err {i}: {e_close}") | |
if final_timeline_video: | |
try: | |
final_timeline_video.close() | |
except Exception as e_close_final: | |
logger.warning(f"β οΈ [{timeline_label}] Final vid close err: {e_close_final}") | |
elif not video_clips: | |
logger.warning(f"[{timeline_label}] No clips. Skip assembly.") | |
st.warning(f"No scenes for {timeline_label}. No video.", icon="π«") | |
all_timelines_successful = False | |
else: | |
error_count = len(generation_errors[timeline_id]) | |
logger.warning(f"[{timeline_label}] {error_count} scene err(s). Skip assembly.") | |
st.warning(f"{timeline_label}: {error_count} err(s). Video not assembled.", icon="β οΈ") | |
all_timelines_successful = False | |
if generation_errors[timeline_id]: | |
logger.error(f"Errors {timeline_label}: {generation_errors[timeline_id]}") | |
# --- End of Timelines Loop --- | |
overall_duration = time.time() - overall_start_time | |
if all_timelines_successful and final_video_paths: | |
status_msg = f"Complete! ({len(final_video_paths)} videos in {overall_duration:.2f}s)" | |
status.update(label=status_msg, state="complete", expanded=False) | |
logger.info(status_msg) | |
elif final_video_paths: | |
status_msg = f"Partially Complete ({len(final_video_paths)} videos, errors). {overall_duration:.2f}s" | |
status.update(label=status_msg, state="warning", expanded=True) | |
logger.warning(status_msg) | |
else: | |
status_msg = f"Failed. No videos. {overall_duration:.2f}s" | |
status.update(label=status_msg, state="error", expanded=True) | |
logger.error(status_msg) | |
# --- 3. Display Results --- | |
st.header("π¬ Generated Timelines") | |
if final_video_paths: | |
sorted_timeline_ids = sorted(final_video_paths.keys()) | |
num_cols = min(len(sorted_timeline_ids), 3) | |
cols = st.columns(num_cols) | |
for idx, timeline_id in enumerate(sorted_timeline_ids): | |
col = cols[idx % num_cols] | |
video_path = final_video_paths[timeline_id] | |
timeline_data = next((t for t in chrono_response.timelines if t.timeline_id == timeline_id), None) | |
reason = timeline_data.divergence_reason if timeline_data else "Unknown" | |
with col: | |
st.subheader(f"Timeline {timeline_id}") | |
st.caption(f"Divergence: {reason}") | |
try: | |
with open(video_path, 'rb') as vf: | |
video_bytes = vf.read() | |
st.video(video_bytes) | |
logger.info(f"Displaying T{timeline_id}") | |
st.download_button(f"Download T{timeline_id}", video_bytes, f"timeline_{timeline_id}.mp4", "video/mp4", key=f"dl_{timeline_id}") | |
if generation_errors.get(timeline_id): | |
scene_errors = [err for err in generation_errors[timeline_id] if not err.startswith(f"T{timeline_id}:")] | |
if scene_errors: | |
with st.expander(f"β οΈ View {len(scene_errors)} Scene Issues"): | |
for err in scene_errors: | |
st.warning(f"- {err}") | |
except FileNotFoundError: | |
logger.error(f"Video missing: {video_path}") | |
st.error(f"Error: Video missing T{timeline_id}.", icon="π¨") | |
except Exception as e: | |
logger.exception(f"Display error {video_path}: {e}") | |
st.error(f"Display error T{timeline_id}: {e}", icon="π¨") | |
else: | |
st.warning("No final videos were successfully generated.") | |
st.subheader("Summary of Generation Issues") | |
has_errors = any(generation_errors.values()) | |
if has_errors: | |
with st.expander("View All Errors", expanded=True): | |
for tid, errors in generation_errors.items(): | |
if errors: | |
st.error(f"**Timeline {tid}:**") | |
for msg in errors: | |
st.error(f" - {msg}") | |
else: | |
st.info("No generation errors recorded.") | |
# --- 4. Cleanup --- | |
st.info(f"Attempting cleanup: {temp_dir}") | |
try: | |
shutil.rmtree(temp_dir) | |
logger.info(f"β Temp dir removed: {temp_dir}") | |
st.success("β Temp files cleaned.") | |
except Exception as e: | |
logger.error(f"β οΈ Failed to remove temp dir {temp_dir}: {e}") | |
st.warning(f"Could not remove temp files: {temp_dir}.", icon="β οΈ") | |
elif not chrono_response: | |
logger.error("Story gen/validation failed.") | |
else: | |
st.error("Unexpected issue post-gen.", icon="π") | |
logger.error("Chrono_response truthy but invalid.") | |
else: | |
st.info("Configure settings and click 'β¨ Generate ChronoWeave β¨' to start.") | |