Spaces:
Build error
Build error
import nltk; nltk.download('wordnet') | |
#@title Load Model | |
selected_model = 'character' | |
# Load model | |
import torch | |
import PIL | |
import numpy as np | |
import ipywidgets as widgets | |
from PIL import Image | |
from models import get_instrumented_model | |
from decomposition import get_or_compute | |
from config import Config | |
import gradio as gr | |
import numpy as np | |
# Speed up computation | |
torch.autograd.set_grad_enabled(False) | |
torch.backends.cudnn.benchmark = True | |
# Specify model to use | |
config = Config( | |
model='StyleGAN2', | |
layer='style', | |
output_class=selected_model, | |
components=80, | |
use_w=True, | |
batch_size=5_000, # style layer quite small | |
) | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
inst = get_instrumented_model(config.model, config.output_class, | |
config.layer, torch.device(device), use_w=config.use_w) | |
path_to_components = get_or_compute(config, inst) | |
model = inst.model | |
comps = np.load(path_to_components) | |
lst = comps.files | |
latent_dirs = [] | |
latent_stdevs = [] | |
load_activations = False | |
for item in lst: | |
if load_activations: | |
if item == 'act_comp': | |
for i in range(comps[item].shape[0]): | |
latent_dirs.append(comps[item][i]) | |
if item == 'act_stdev': | |
for i in range(comps[item].shape[0]): | |
latent_stdevs.append(comps[item][i]) | |
else: | |
if item == 'lat_comp': | |
for i in range(comps[item].shape[0]): | |
latent_dirs.append(comps[item][i]) | |
if item == 'lat_stdev': | |
for i in range(comps[item].shape[0]): | |
latent_stdevs.append(comps[item][i]) | |
def display_sample_pytorch(seed, truncation, directions, distances, scale, start, end, w=None, disp=True, save=None, noise_spec=None): | |
# blockPrint() | |
model.truncation = truncation | |
if w is None: | |
w = model.sample_latent(1, seed=seed).detach().cpu().numpy() | |
w = [w]*model.get_max_latents() # one per layer | |
else: | |
w = [np.expand_dims(x, 0) for x in w] | |
for l in range(start, end): | |
for i in range(len(directions)): | |
w[l] = w[l] + directions[i] * distances[i] * scale | |
torch.cuda.empty_cache() | |
#save image and display | |
out = model.sample_np(w) | |
final_im = Image.fromarray((out * 255).astype(np.uint8)).resize((500,500),Image.LANCZOS) | |
if save is not None: | |
if disp == False: | |
print(save) | |
final_im.save(f'out/{seed}_{save:05}.png') | |
return final_im | |
#@title Demo UI | |
def generate_image(seed, truncation, | |
monster, female, skimpy, light, bodysuit, bulky, human_head, | |
start_layer, end_layer): | |
seed = hash(seed) % 1000000000 | |
scale = 1 | |
params = {'monster': monster, | |
'female': female, | |
'skimpy': skimpy, | |
'light': light, | |
'bodysuit': bodysuit, | |
'bulky': bulky, | |
'human_head': human_head} | |
param_indexes = {'monster': 0, | |
'female': 1, | |
'skimpy': 2, | |
'light': 4, | |
'bodysuit': 5, | |
'bulky': 6, | |
'human_head': 8} | |
directions = [] | |
distances = [] | |
for k, v in params.items(): | |
directions.append(latent_dirs[param_indexes[k]]) | |
distances.append(v) | |
style = {'description_width': 'initial'} | |
return display_sample_pytorch(int(seed), truncation, directions, distances, scale, int(start_layer), int(end_layer), disp=False) | |
truncation = gr.inputs.Slider(minimum=0, maximum=1, default=0.5, label="Truncation") | |
start_layer = gr.inputs.Number(default=0, label="Start Layer") | |
end_layer = gr.inputs.Number(default=14, label="End Layer") | |
seed = gr.inputs.Textbox(default="0", label="Seed") | |
slider_max_val = 20 | |
slider_min_val = -20 | |
slider_step = 1 | |
monster = gr.inputs.Slider(label="Monsterfication", minimum=slider_min_val, maximum=slider_max_val, default=0) | |
female = gr.inputs.Slider(label="Gender", minimum=slider_min_val, maximum=slider_max_val, default=0) | |
skimpy = gr.inputs.Slider(label="Amount of Clothing", minimum=slider_min_val, maximum=slider_max_val, default=0) | |
light = gr.inputs.Slider(label="Brightness", minimum=slider_min_val, maximum=slider_max_val, default=0) | |
bodysuit = gr.inputs.Slider(label="Bodysuit", minimum=slider_min_val, maximum=slider_max_val, default=0) | |
bulky = gr.inputs.Slider(label="Bulkiness", minimum=slider_min_val, maximum=slider_max_val, default=0) | |
human_head = gr.inputs.Slider(label="Head", minimum=slider_min_val, maximum=slider_max_val, default=0) | |
scale = 1 | |
inputs = [seed, truncation, monster, female, skimpy, light, bodysuit, bulky, human_head, start_layer, end_layer] | |
description = "Change the seed number to generate different character design. Made by <a href='https://www.mfrashad.com/' target='_blank'>@mfrashad</a>. For more details on how to build this, visit the <a href='https://github.com/mfrashad/gancreate-saai' target='_blank'>repo</a>. Please give a star if you find it useful :)" | |
gr.Interface(generate_image, inputs, ["image"], description=description, live=True, title="CharacterGAN").launch() |