Spaces:
Build error
Build error
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. | |
# | |
# This work is licensed under the Creative Commons Attribution-NonCommercial | |
# 4.0 International License. To view a copy of this license, visit | |
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to | |
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. | |
"""Loss functions.""" | |
import tensorflow as tf | |
import dnnlib.tflib as tflib | |
from dnnlib.tflib.autosummary import autosummary | |
#---------------------------------------------------------------------------- | |
# Convenience func that casts all of its arguments to tf.float32. | |
def fp32(*values): | |
if len(values) == 1 and isinstance(values[0], tuple): | |
values = values[0] | |
values = tuple(tf.cast(v, tf.float32) for v in values) | |
return values if len(values) >= 2 else values[0] | |
#---------------------------------------------------------------------------- | |
# WGAN & WGAN-GP loss functions. | |
def G_wgan(G, D, opt, training_set, minibatch_size): # pylint: disable=unused-argument | |
latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:]) | |
labels = training_set.get_random_labels_tf(minibatch_size) | |
fake_images_out = G.get_output_for(latents, labels, is_training=True) | |
fake_scores_out = fp32(D.get_output_for(fake_images_out, labels, is_training=True)) | |
loss = -fake_scores_out | |
return loss | |
def D_wgan(G, D, opt, training_set, minibatch_size, reals, labels, # pylint: disable=unused-argument | |
wgan_epsilon = 0.001): # Weight for the epsilon term, \epsilon_{drift}. | |
latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:]) | |
fake_images_out = G.get_output_for(latents, labels, is_training=True) | |
real_scores_out = fp32(D.get_output_for(reals, labels, is_training=True)) | |
fake_scores_out = fp32(D.get_output_for(fake_images_out, labels, is_training=True)) | |
real_scores_out = autosummary('Loss/scores/real', real_scores_out) | |
fake_scores_out = autosummary('Loss/scores/fake', fake_scores_out) | |
loss = fake_scores_out - real_scores_out | |
with tf.name_scope('EpsilonPenalty'): | |
epsilon_penalty = autosummary('Loss/epsilon_penalty', tf.square(real_scores_out)) | |
loss += epsilon_penalty * wgan_epsilon | |
return loss | |
def D_wgan_gp(G, D, opt, training_set, minibatch_size, reals, labels, # pylint: disable=unused-argument | |
wgan_lambda = 10.0, # Weight for the gradient penalty term. | |
wgan_epsilon = 0.001, # Weight for the epsilon term, \epsilon_{drift}. | |
wgan_target = 1.0): # Target value for gradient magnitudes. | |
latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:]) | |
fake_images_out = G.get_output_for(latents, labels, is_training=True) | |
real_scores_out = fp32(D.get_output_for(reals, labels, is_training=True)) | |
fake_scores_out = fp32(D.get_output_for(fake_images_out, labels, is_training=True)) | |
real_scores_out = autosummary('Loss/scores/real', real_scores_out) | |
fake_scores_out = autosummary('Loss/scores/fake', fake_scores_out) | |
loss = fake_scores_out - real_scores_out | |
with tf.name_scope('GradientPenalty'): | |
mixing_factors = tf.random_uniform([minibatch_size, 1, 1, 1], 0.0, 1.0, dtype=fake_images_out.dtype) | |
mixed_images_out = tflib.lerp(tf.cast(reals, fake_images_out.dtype), fake_images_out, mixing_factors) | |
mixed_scores_out = fp32(D.get_output_for(mixed_images_out, labels, is_training=True)) | |
mixed_scores_out = autosummary('Loss/scores/mixed', mixed_scores_out) | |
mixed_loss = opt.apply_loss_scaling(tf.reduce_sum(mixed_scores_out)) | |
mixed_grads = opt.undo_loss_scaling(fp32(tf.gradients(mixed_loss, [mixed_images_out])[0])) | |
mixed_norms = tf.sqrt(tf.reduce_sum(tf.square(mixed_grads), axis=[1,2,3])) | |
mixed_norms = autosummary('Loss/mixed_norms', mixed_norms) | |
gradient_penalty = tf.square(mixed_norms - wgan_target) | |
loss += gradient_penalty * (wgan_lambda / (wgan_target**2)) | |
with tf.name_scope('EpsilonPenalty'): | |
epsilon_penalty = autosummary('Loss/epsilon_penalty', tf.square(real_scores_out)) | |
loss += epsilon_penalty * wgan_epsilon | |
return loss | |
#---------------------------------------------------------------------------- | |
# Hinge loss functions. (Use G_wgan with these) | |
def D_hinge(G, D, opt, training_set, minibatch_size, reals, labels): # pylint: disable=unused-argument | |
latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:]) | |
fake_images_out = G.get_output_for(latents, labels, is_training=True) | |
real_scores_out = fp32(D.get_output_for(reals, labels, is_training=True)) | |
fake_scores_out = fp32(D.get_output_for(fake_images_out, labels, is_training=True)) | |
real_scores_out = autosummary('Loss/scores/real', real_scores_out) | |
fake_scores_out = autosummary('Loss/scores/fake', fake_scores_out) | |
loss = tf.maximum(0., 1.+fake_scores_out) + tf.maximum(0., 1.-real_scores_out) | |
return loss | |
def D_hinge_gp(G, D, opt, training_set, minibatch_size, reals, labels, # pylint: disable=unused-argument | |
wgan_lambda = 10.0, # Weight for the gradient penalty term. | |
wgan_target = 1.0): # Target value for gradient magnitudes. | |
latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:]) | |
fake_images_out = G.get_output_for(latents, labels, is_training=True) | |
real_scores_out = fp32(D.get_output_for(reals, labels, is_training=True)) | |
fake_scores_out = fp32(D.get_output_for(fake_images_out, labels, is_training=True)) | |
real_scores_out = autosummary('Loss/scores/real', real_scores_out) | |
fake_scores_out = autosummary('Loss/scores/fake', fake_scores_out) | |
loss = tf.maximum(0., 1.+fake_scores_out) + tf.maximum(0., 1.-real_scores_out) | |
with tf.name_scope('GradientPenalty'): | |
mixing_factors = tf.random_uniform([minibatch_size, 1, 1, 1], 0.0, 1.0, dtype=fake_images_out.dtype) | |
mixed_images_out = tflib.lerp(tf.cast(reals, fake_images_out.dtype), fake_images_out, mixing_factors) | |
mixed_scores_out = fp32(D.get_output_for(mixed_images_out, labels, is_training=True)) | |
mixed_scores_out = autosummary('Loss/scores/mixed', mixed_scores_out) | |
mixed_loss = opt.apply_loss_scaling(tf.reduce_sum(mixed_scores_out)) | |
mixed_grads = opt.undo_loss_scaling(fp32(tf.gradients(mixed_loss, [mixed_images_out])[0])) | |
mixed_norms = tf.sqrt(tf.reduce_sum(tf.square(mixed_grads), axis=[1,2,3])) | |
mixed_norms = autosummary('Loss/mixed_norms', mixed_norms) | |
gradient_penalty = tf.square(mixed_norms - wgan_target) | |
loss += gradient_penalty * (wgan_lambda / (wgan_target**2)) | |
return loss | |
#---------------------------------------------------------------------------- | |
# Loss functions advocated by the paper | |
# "Which Training Methods for GANs do actually Converge?" | |
def G_logistic_saturating(G, D, opt, training_set, minibatch_size): # pylint: disable=unused-argument | |
latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:]) | |
labels = training_set.get_random_labels_tf(minibatch_size) | |
fake_images_out = G.get_output_for(latents, labels, is_training=True) | |
fake_scores_out = fp32(D.get_output_for(fake_images_out, labels, is_training=True)) | |
loss = -tf.nn.softplus(fake_scores_out) # log(1 - logistic(fake_scores_out)) | |
return loss | |
def G_logistic_nonsaturating(G, D, opt, training_set, minibatch_size): # pylint: disable=unused-argument | |
latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:]) | |
labels = training_set.get_random_labels_tf(minibatch_size) | |
fake_images_out = G.get_output_for(latents, labels, is_training=True) | |
fake_scores_out = fp32(D.get_output_for(fake_images_out, labels, is_training=True)) | |
loss = tf.nn.softplus(-fake_scores_out) # -log(logistic(fake_scores_out)) | |
return loss | |
def D_logistic(G, D, opt, training_set, minibatch_size, reals, labels): # pylint: disable=unused-argument | |
latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:]) | |
fake_images_out = G.get_output_for(latents, labels, is_training=True) | |
real_scores_out = fp32(D.get_output_for(reals, labels, is_training=True)) | |
fake_scores_out = fp32(D.get_output_for(fake_images_out, labels, is_training=True)) | |
real_scores_out = autosummary('Loss/scores/real', real_scores_out) | |
fake_scores_out = autosummary('Loss/scores/fake', fake_scores_out) | |
loss = tf.nn.softplus(fake_scores_out) # -log(1 - logistic(fake_scores_out)) | |
loss += tf.nn.softplus(-real_scores_out) # -log(logistic(real_scores_out)) # temporary pylint workaround # pylint: disable=invalid-unary-operand-type | |
return loss | |
def D_logistic_simplegp(G, D, opt, training_set, minibatch_size, reals, labels, r1_gamma=10.0, r2_gamma=0.0): # pylint: disable=unused-argument | |
latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:]) | |
fake_images_out = G.get_output_for(latents, labels, is_training=True) | |
real_scores_out = fp32(D.get_output_for(reals, labels, is_training=True)) | |
fake_scores_out = fp32(D.get_output_for(fake_images_out, labels, is_training=True)) | |
real_scores_out = autosummary('Loss/scores/real', real_scores_out) | |
fake_scores_out = autosummary('Loss/scores/fake', fake_scores_out) | |
loss = tf.nn.softplus(fake_scores_out) # -log(1 - logistic(fake_scores_out)) | |
loss += tf.nn.softplus(-real_scores_out) # -log(logistic(real_scores_out)) # temporary pylint workaround # pylint: disable=invalid-unary-operand-type | |
if r1_gamma != 0.0: | |
with tf.name_scope('R1Penalty'): | |
real_loss = opt.apply_loss_scaling(tf.reduce_sum(real_scores_out)) | |
real_grads = opt.undo_loss_scaling(fp32(tf.gradients(real_loss, [reals])[0])) | |
r1_penalty = tf.reduce_sum(tf.square(real_grads), axis=[1,2,3]) | |
r1_penalty = autosummary('Loss/r1_penalty', r1_penalty) | |
loss += r1_penalty * (r1_gamma * 0.5) | |
if r2_gamma != 0.0: | |
with tf.name_scope('R2Penalty'): | |
fake_loss = opt.apply_loss_scaling(tf.reduce_sum(fake_scores_out)) | |
fake_grads = opt.undo_loss_scaling(fp32(tf.gradients(fake_loss, [fake_images_out])[0])) | |
r2_penalty = tf.reduce_sum(tf.square(fake_grads), axis=[1,2,3]) | |
r2_penalty = autosummary('Loss/r2_penalty', r2_penalty) | |
loss += r2_penalty * (r2_gamma * 0.5) | |
return loss | |
#---------------------------------------------------------------------------- | |