Spaces:
Running
Running
from transformers import Trainer, TrainingArguments | |
from datasets import load_dataset | |
from transformers import ViTForImageClassification, ViTFeatureExtractor | |
# Carregar o dataset "beans" | |
dataset = load_dataset("beans") | |
# Carregar o modelo pré-treinado e definir o número de classes corretamente (3 classes para Beans) | |
model = ViTForImageClassification.from_pretrained( | |
"google/vit-base-patch16-224-in21k", | |
num_labels=3 # Beans tem 3 classes | |
) | |
feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k") | |
# Preprocessamento | |
def preprocess_function(examples): | |
inputs = feature_extractor(examples["image"], return_tensors="pt") # A chave correta no Beans é "image" | |
inputs["labels"] = examples["labels"] # Certifique-se de que o rótulo está correto | |
return inputs | |
# Aplicando o preprocessamento ao dataset | |
dataset = dataset.map(preprocess_function, batched=True) | |
# Definir os parâmetros de treinamento | |
training_args = TrainingArguments( | |
output_dir="./results", | |
evaluation_strategy="epoch", | |
learning_rate=2e-5, | |
per_device_train_batch_size=16, | |
per_device_eval_batch_size=64, | |
num_train_epochs=3, | |
weight_decay=0.01, | |
) | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=dataset["train"], | |
eval_dataset=dataset["validation"], # No Beans, o conjunto de teste é chamado de "validation" | |
) | |
# Treinar o modelo | |
trainer.train() | |
# Salvar o modelo e o feature extractor treinados | |
model.save_pretrained("./computer-vision-beans") | |
feature_extractor.save_pretrained("./computer-vision-beans") | |