File size: 11,577 Bytes
d8760c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
/* Copyright 2021 Google LLC. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/


window.initPair = function(pair){
  var isMobile = window.innerWidth <= 820

  var sel = d3.select('.' + pair.class).html('')
    .at({role: 'graphics-document', 'aria-label': pair.ariaLabel})
    .on('keydown', function(){
      sel.classed('changed', 1)
      if (d3.event.keyCode != 13) return
      d3.event.preventDefault()
      // return

      pair.str0 = ''
      pair.str1 = ''

      updateChart()
    })

  if (!sel.node()) return

  var optionSel = sel.append('div.options')

  var inputRow = optionSel.append('div.flex-row.flex-row-textarea')
  var input1Sel = inputRow.append('textarea.input-1') 
    .st({color: util.colors[1]}).at({cols: 30})
  input1Sel.node().value = pair.s1.replace('[MASK]', '_')

  var input0Sel = inputRow.append('textarea.input-0')
    .st({color: util.colors[0]}).at({cols: 30})
  input0Sel.node().value = pair.s0.replace('[MASK]', '_')

  if (isMobile){
    sel.selectAll('textarea').on('change', updateChart)
  }

  var countSel = optionSel.append('div')
    .append('b').text('Number of Tokens')
    .append('info').text('ⓘ').call(addLockedTooltip)
    .datum('The scales are set using the top N tokens for each sentence. <br><br>"Likelihoods" will show more than N tokens if a top completion for one sentence is unlikely for the other sentence.')
    .parent().parent()
    .append('div.flex-row')
    .appendMany('div.button', [30, 200, 1000, 5000, 99999])
    .text(d => d > 5000 ? 'All' : d)
    .st({textAlign: 'center'})
    .on('click', d => {
      pair.count = d
      updateChart()
    })

  var typeSel = optionSel.append('div')
    .append('b').text('Chart Type')
    .append('info').text('ⓘ').call(addLockedTooltip)
    .datum('"Likelihoods" shows the logits from both models plotted directly with a shared linear scale.<br><br> To better contrast the outputs, "Differences" shows <code>logitA - logitB</code> on the y-axis and <code>mean(logitA, logitB)</code> on the x-axis with separate linear scales.')
    .parent().parent()
    .append('div.flex-row')
    .appendMany('div.button', ['Likelihoods', 'Differences'])
    .text(d => d)
    .st({textAlign: 'center'})
    .on('click', d => {
      pair.type = d
      updateChart()
    })

  var modelSel = optionSel.append('div')
    .st({display: pair.model == 'BERT' ? 'none' : ''})
    .append('b').text('Model')
    .parent()
    .append('div.flex-row')
    .appendMany('div.button', ['BERT', 'Zari'])
    .text(d => d)
    .st({textAlign: 'center'})
    .on('click', d => {
      pair.model = d
      updateChart()
    })

  // TODO add loading spinner
  var updateSel = optionSel
    .append('div.flex-row')
    .append('div.button.update').on('click', updateChart)
    .text('Update')
    .st({display: isMobile ? 'none' : ''})

  var warningSel = optionSel.append('div.warning')
    .text('⚠️Some of the text this model was trained on includes harmful stereotypes. This is a tool to uncover these associations—not an endorsement of them.')
  
  var resetSel = optionSel.append('div.reset')
    .html('<span>↻</span> Reset')
    .on('click', () => {
      pair = JSON.parse(pair.pairStr)
      pair.pairStr = JSON.stringify(pair)

      input0Sel.node().value = pair.s0
      input1Sel.node().value = pair.s1

      updateChart(true)
    })

  if (pair.alts){
    d3.select('.' + pair.class + '-alts').html('')
      .classed('alt-block', 1).st({display: 'block'})
      .appendMany('span.p-button-link', pair.alts)
      .html(d => d.str)
      .on('click', d => {
        input0Sel.node().value = d.s0
        input1Sel.node().value = d.s1

        updateChart()
      })
  }


  var margin = {bottom: 50, left: 25, top: 5, right: 20}
  var graphSel = sel.append('div.graph')
  var totalWidth = graphSel.node().offsetWidth
  var width = totalWidth - margin.left - margin.right

  var c = d3.conventions({
    sel: graphSel.append('div').st({marginTop: isMobile ? 20 : -5}),
    width,
    height: width,
    margin,
    layers: 'sdds',
  })


  var nTicks = 4
  var tickScale = d3.scaleLinear().range([0, c.width])
  c.svg.appendMany('path.bg-tick', d3.range(nTicks + 1))
    .at({d: d => `M ${.5 + Math.round(tickScale(d/nTicks))} 0 V ${c.height}`})
  c.svg.appendMany('path.bg-tick', d3.range(nTicks + 1))
    .at({d: d => `M 0 ${.5 + Math.round(tickScale(d/nTicks))} H ${c.width}`})


  var annotationSel = c.layers[1].appendMany('div.annotations', pair.annotations)
    .translate(d => d.pos)
    .html(d => d.str)
    .st({color: d => d.color, width: 250, postion: 'absolute'})

  var scatter = window.initScatter(c)

  updateChart(true)
  

  async function updateChart(isFirst){
    sel.classed('changed', 0)
    warningSel.st({opacity: isFirst ? 0 : 1})
    resetSel.st({opacity: isFirst ? 0 : 1})
    annotationSel.st({opacity: isFirst ? 1 : 0})

    countSel.classed('active', d => d == pair.count)
    typeSel.classed('active', d => d == pair.type)
    modelSel.classed('active', d => d == pair.model)

    function getStr(sel){ 
      return sel.node().value.replace('_', '[MASK]')
    }

    var modelPath = pair.model == 'Zari' ? 'embed_zari_cda' : 'embed'

    pair.s0 = input0Sel.node().value.replace('_', '[MASK]')
    pair.s1 = input1Sel.node().value.replace('_', '[MASK]')

    updateSel.classed('loading', 1)
    var vals0 = await post(modelPath, {sentence: pair.s0})
    var vals1 = await post(modelPath, {sentence: pair.s1})
    updateSel.classed('loading', 0)


    var allTokens = vals0.map((v0, i) => {
      return {word: tokenizer.vocab[i], v0, i, v1: vals1[i]}
    })
    allTokens.forEach(d => {
      d.dif = d.v0 - d.v1
      d.meanV = (d.v0 + d.v1) / 2
      d.isVisible = false
    })

    _.sortBy(allTokens, d => -d.v1).forEach((d, i) => d.v1i = i)
    _.sortBy(allTokens, d => -d.v0).forEach((d, i) => d.v0i = i)

    var topTokens = allTokens.filter(d => d.v0i <= pair.count || d.v1i <= pair.count)


    var logitExtent = d3.extent(topTokens.map(d => d.v0).concat(topTokens.map(d => d.v1)))

    var tokens = allTokens
      .filter(d => logitExtent[0] <= d.v0 && logitExtent[0] <= d.v1)

    var mag = logitExtent[1] - logitExtent[0]
    logitExtent = [logitExtent[0] - mag*.002, logitExtent[1] + mag*.002]

    if (pair.type == 'Differences') tokens = _.sortBy(allTokens, d => -d.meanV).slice(0, pair.count)

    tokens.forEach(d => {
      d.isVisible = true
    })

    var maxDif = d3.max(d3.extent(tokens, d => d.dif).map(Math.abs))
    var color = palette(-maxDif*.8, maxDif*.8)

    updateSentenceLabels()

    if (pair.type == 'Likelihoods'){
      drawXY()
    } else{
      drawRotated()
    }

    sel.classed('is-xy', pair.type == 'Likelihoods')
    sel.classed('is-rotate', pair.type != 'Likelihoods')


    function drawXY(){
      c.x.domain(logitExtent)
      c.y.domain(logitExtent)

      d3.drawAxis(c)

      var s = {30: 4, 200: 3, 1000: 3}[pair.count] || 2
      var scatterData = allTokens.map(d => {
        var x = c.x(d.v0)
        var y = c.y(d.v1)
        var fill = color(d.dif)
        var dif = d.dif
        var word = d.word
        var show = ''
        var isVisible = d.isVisible

        return {x, y, s, dif, fill, word, show, isVisible}
      })

      var textCandidates = _.sortBy(scatterData.filter(d => d.isVisible), d => d.dif)
      d3.nestBy(textCandidates.slice(0, 1000), d => Math.round(d.y/10))
        .forEach(d => d[0].show = 'uf')
      d3.nestBy(textCandidates.reverse().slice(0, 1000), d => Math.round(d.y/10))
        .forEach(d => d[0].show = 'lr')

      logitExtent.pair = pair
      scatter.draw(c, scatterData, true)

      c.svg.selectAppend('text.x-axis-label.xy-only')
        .translate([c.width/2, c.height + 24])
        .text(pair.label0 ? ' __ likelihood, ' + pair.label0 + ' sentence →' : '__ likelihood, sentence two →')
        .st({fill: util.colors[0]})
        .at({textAnchor: 'middle'})


      c.svg.selectAppend('g.y-axis-label.xy-only')
        .translate([c.width + 20, c.height/2])
        .selectAppend('text')
        .text(pair.label1 ? ' __ likelihood, ' + pair.label1 + ' sentence →' : '__ likelihood, sentence one →')
        .st({fill: util.colors[1]})
        .at({textAnchor: 'middle', transform: 'rotate(-90)'})
    }

    function drawRotated(){
      c.x.domain(d3.extent(tokens, d => d.meanV))
      c.y.domain([maxDif, -maxDif])

      d3.drawAxis(c)

      var scatterData = allTokens.map(d => {
        var x = c.x(d.meanV)
        var y = c.y(d.dif)
        var fill = color(d.dif)
        var word = d.word
        var show = ''
        var isVisible = d.isVisible

        return {x, y, s: 2, fill, word, show, isVisible}
      })

      scatterData.forEach(d => {
        d.dx = d.x - c.width/2
        d.dy =  d.y - c.height/2
      })

      var textCandidates = _.sortBy(scatterData, d => -d.dx*d.dx - d.dy*d.dy)
        .filter(d => d.isVisible)
        .slice(0, 5000)
      d3.nestBy(textCandidates, d => Math.round(12*Math.atan2(d.dx, d.dy)))
        .map(d => d[0])
        .forEach(d => d.show = (d.dy < 0 ? 'u' : 'l') + (d.dx < 0 ? 'l' : 'r'))

      scatter.draw(c, scatterData, false)

      c.svg.selectAppend('text.rotate-only.x-axis-label')
        .translate([c.width/2, c.height + 24])
        .text('__ likelihood, both sentences →')
        .at({textAnchor: 'middle'})
        .st({fill: '#000'})

      c.svg.selectAll('g.rotate-only.sent-1,g.rotate-only.sent-1').remove()
      c.svg.selectAppend('g.rotate-only.sent-1')
        .translate([c.width + 20, c.height/2])
        .append('text')
        .text(`Higher likelihood, ${pair.label1 ? pair.label1 + ' sentence ' : 'sentence one'}  →`)
        .at({textAnchor: 'start', transform: 'rotate(-90)', x: 20})
        .st({fill: util.colors[1]})

      c.svg.selectAppend('g.rotate-only.sent-1')
        .translate([c.width + 20, c.height/2 + 0])
        .append('text')
        .text(`← Higher likelihood, ${pair.label0 ? pair.label0 + ' sentence ' : 'sentence two'}`)
        .at({textAnchor: 'end', transform: 'rotate(-90)', x: -20})
        .st({fill: util.colors[0]})
    }
  }

  function updateSentenceLabels(){
    var t0 = tokenizer.tokenize(pair.s0)
    var t1 = tokenizer.tokenize(pair.s1)

    var i = 0
    while (t0[i] == t1[i] && i < t0.length) i++

    var j = 1
    while (t0[t0.length - j] == t1[t1.length - j] && j < t0.length) j++

    pair.label0 = tokens2origStr(t0, pair.s0)
    pair.label1 = tokens2origStr(t1, pair.s1)

    function tokens2origStr(t, s){
      var tokenStr = tokenizer.decode(t.slice(i, -j + 1)).trim()
      var lowerStr = s.toLowerCase()

      var startI = lowerStr.indexOf(tokenStr)
      return s.slice(startI, startI + tokenStr.length)
    }

    if (
      !pair.label0.length || 
      !pair.label1.length || 
      pair.label0.length > 15 || 
      pair.label1.length > 15){
      pair.label0 = ''
      pair.label1 = ''
    }

    // console.log(i, j, pair.label0, pair.label1)
  }
}

if (window.init) init()