Spaces:
Running
Running
File size: 11,577 Bytes
d8760c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
/* Copyright 2021 Google LLC. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
window.initPair = function(pair){
var isMobile = window.innerWidth <= 820
var sel = d3.select('.' + pair.class).html('')
.at({role: 'graphics-document', 'aria-label': pair.ariaLabel})
.on('keydown', function(){
sel.classed('changed', 1)
if (d3.event.keyCode != 13) return
d3.event.preventDefault()
// return
pair.str0 = ''
pair.str1 = ''
updateChart()
})
if (!sel.node()) return
var optionSel = sel.append('div.options')
var inputRow = optionSel.append('div.flex-row.flex-row-textarea')
var input1Sel = inputRow.append('textarea.input-1')
.st({color: util.colors[1]}).at({cols: 30})
input1Sel.node().value = pair.s1.replace('[MASK]', '_')
var input0Sel = inputRow.append('textarea.input-0')
.st({color: util.colors[0]}).at({cols: 30})
input0Sel.node().value = pair.s0.replace('[MASK]', '_')
if (isMobile){
sel.selectAll('textarea').on('change', updateChart)
}
var countSel = optionSel.append('div')
.append('b').text('Number of Tokens')
.append('info').text('ⓘ').call(addLockedTooltip)
.datum('The scales are set using the top N tokens for each sentence. <br><br>"Likelihoods" will show more than N tokens if a top completion for one sentence is unlikely for the other sentence.')
.parent().parent()
.append('div.flex-row')
.appendMany('div.button', [30, 200, 1000, 5000, 99999])
.text(d => d > 5000 ? 'All' : d)
.st({textAlign: 'center'})
.on('click', d => {
pair.count = d
updateChart()
})
var typeSel = optionSel.append('div')
.append('b').text('Chart Type')
.append('info').text('ⓘ').call(addLockedTooltip)
.datum('"Likelihoods" shows the logits from both models plotted directly with a shared linear scale.<br><br> To better contrast the outputs, "Differences" shows <code>logitA - logitB</code> on the y-axis and <code>mean(logitA, logitB)</code> on the x-axis with separate linear scales.')
.parent().parent()
.append('div.flex-row')
.appendMany('div.button', ['Likelihoods', 'Differences'])
.text(d => d)
.st({textAlign: 'center'})
.on('click', d => {
pair.type = d
updateChart()
})
var modelSel = optionSel.append('div')
.st({display: pair.model == 'BERT' ? 'none' : ''})
.append('b').text('Model')
.parent()
.append('div.flex-row')
.appendMany('div.button', ['BERT', 'Zari'])
.text(d => d)
.st({textAlign: 'center'})
.on('click', d => {
pair.model = d
updateChart()
})
// TODO add loading spinner
var updateSel = optionSel
.append('div.flex-row')
.append('div.button.update').on('click', updateChart)
.text('Update')
.st({display: isMobile ? 'none' : ''})
var warningSel = optionSel.append('div.warning')
.text('⚠️Some of the text this model was trained on includes harmful stereotypes. This is a tool to uncover these associations—not an endorsement of them.')
var resetSel = optionSel.append('div.reset')
.html('<span>↻</span> Reset')
.on('click', () => {
pair = JSON.parse(pair.pairStr)
pair.pairStr = JSON.stringify(pair)
input0Sel.node().value = pair.s0
input1Sel.node().value = pair.s1
updateChart(true)
})
if (pair.alts){
d3.select('.' + pair.class + '-alts').html('')
.classed('alt-block', 1).st({display: 'block'})
.appendMany('span.p-button-link', pair.alts)
.html(d => d.str)
.on('click', d => {
input0Sel.node().value = d.s0
input1Sel.node().value = d.s1
updateChart()
})
}
var margin = {bottom: 50, left: 25, top: 5, right: 20}
var graphSel = sel.append('div.graph')
var totalWidth = graphSel.node().offsetWidth
var width = totalWidth - margin.left - margin.right
var c = d3.conventions({
sel: graphSel.append('div').st({marginTop: isMobile ? 20 : -5}),
width,
height: width,
margin,
layers: 'sdds',
})
var nTicks = 4
var tickScale = d3.scaleLinear().range([0, c.width])
c.svg.appendMany('path.bg-tick', d3.range(nTicks + 1))
.at({d: d => `M ${.5 + Math.round(tickScale(d/nTicks))} 0 V ${c.height}`})
c.svg.appendMany('path.bg-tick', d3.range(nTicks + 1))
.at({d: d => `M 0 ${.5 + Math.round(tickScale(d/nTicks))} H ${c.width}`})
var annotationSel = c.layers[1].appendMany('div.annotations', pair.annotations)
.translate(d => d.pos)
.html(d => d.str)
.st({color: d => d.color, width: 250, postion: 'absolute'})
var scatter = window.initScatter(c)
updateChart(true)
async function updateChart(isFirst){
sel.classed('changed', 0)
warningSel.st({opacity: isFirst ? 0 : 1})
resetSel.st({opacity: isFirst ? 0 : 1})
annotationSel.st({opacity: isFirst ? 1 : 0})
countSel.classed('active', d => d == pair.count)
typeSel.classed('active', d => d == pair.type)
modelSel.classed('active', d => d == pair.model)
function getStr(sel){
return sel.node().value.replace('_', '[MASK]')
}
var modelPath = pair.model == 'Zari' ? 'embed_zari_cda' : 'embed'
pair.s0 = input0Sel.node().value.replace('_', '[MASK]')
pair.s1 = input1Sel.node().value.replace('_', '[MASK]')
updateSel.classed('loading', 1)
var vals0 = await post(modelPath, {sentence: pair.s0})
var vals1 = await post(modelPath, {sentence: pair.s1})
updateSel.classed('loading', 0)
var allTokens = vals0.map((v0, i) => {
return {word: tokenizer.vocab[i], v0, i, v1: vals1[i]}
})
allTokens.forEach(d => {
d.dif = d.v0 - d.v1
d.meanV = (d.v0 + d.v1) / 2
d.isVisible = false
})
_.sortBy(allTokens, d => -d.v1).forEach((d, i) => d.v1i = i)
_.sortBy(allTokens, d => -d.v0).forEach((d, i) => d.v0i = i)
var topTokens = allTokens.filter(d => d.v0i <= pair.count || d.v1i <= pair.count)
var logitExtent = d3.extent(topTokens.map(d => d.v0).concat(topTokens.map(d => d.v1)))
var tokens = allTokens
.filter(d => logitExtent[0] <= d.v0 && logitExtent[0] <= d.v1)
var mag = logitExtent[1] - logitExtent[0]
logitExtent = [logitExtent[0] - mag*.002, logitExtent[1] + mag*.002]
if (pair.type == 'Differences') tokens = _.sortBy(allTokens, d => -d.meanV).slice(0, pair.count)
tokens.forEach(d => {
d.isVisible = true
})
var maxDif = d3.max(d3.extent(tokens, d => d.dif).map(Math.abs))
var color = palette(-maxDif*.8, maxDif*.8)
updateSentenceLabels()
if (pair.type == 'Likelihoods'){
drawXY()
} else{
drawRotated()
}
sel.classed('is-xy', pair.type == 'Likelihoods')
sel.classed('is-rotate', pair.type != 'Likelihoods')
function drawXY(){
c.x.domain(logitExtent)
c.y.domain(logitExtent)
d3.drawAxis(c)
var s = {30: 4, 200: 3, 1000: 3}[pair.count] || 2
var scatterData = allTokens.map(d => {
var x = c.x(d.v0)
var y = c.y(d.v1)
var fill = color(d.dif)
var dif = d.dif
var word = d.word
var show = ''
var isVisible = d.isVisible
return {x, y, s, dif, fill, word, show, isVisible}
})
var textCandidates = _.sortBy(scatterData.filter(d => d.isVisible), d => d.dif)
d3.nestBy(textCandidates.slice(0, 1000), d => Math.round(d.y/10))
.forEach(d => d[0].show = 'uf')
d3.nestBy(textCandidates.reverse().slice(0, 1000), d => Math.round(d.y/10))
.forEach(d => d[0].show = 'lr')
logitExtent.pair = pair
scatter.draw(c, scatterData, true)
c.svg.selectAppend('text.x-axis-label.xy-only')
.translate([c.width/2, c.height + 24])
.text(pair.label0 ? ' __ likelihood, ' + pair.label0 + ' sentence →' : '__ likelihood, sentence two →')
.st({fill: util.colors[0]})
.at({textAnchor: 'middle'})
c.svg.selectAppend('g.y-axis-label.xy-only')
.translate([c.width + 20, c.height/2])
.selectAppend('text')
.text(pair.label1 ? ' __ likelihood, ' + pair.label1 + ' sentence →' : '__ likelihood, sentence one →')
.st({fill: util.colors[1]})
.at({textAnchor: 'middle', transform: 'rotate(-90)'})
}
function drawRotated(){
c.x.domain(d3.extent(tokens, d => d.meanV))
c.y.domain([maxDif, -maxDif])
d3.drawAxis(c)
var scatterData = allTokens.map(d => {
var x = c.x(d.meanV)
var y = c.y(d.dif)
var fill = color(d.dif)
var word = d.word
var show = ''
var isVisible = d.isVisible
return {x, y, s: 2, fill, word, show, isVisible}
})
scatterData.forEach(d => {
d.dx = d.x - c.width/2
d.dy = d.y - c.height/2
})
var textCandidates = _.sortBy(scatterData, d => -d.dx*d.dx - d.dy*d.dy)
.filter(d => d.isVisible)
.slice(0, 5000)
d3.nestBy(textCandidates, d => Math.round(12*Math.atan2(d.dx, d.dy)))
.map(d => d[0])
.forEach(d => d.show = (d.dy < 0 ? 'u' : 'l') + (d.dx < 0 ? 'l' : 'r'))
scatter.draw(c, scatterData, false)
c.svg.selectAppend('text.rotate-only.x-axis-label')
.translate([c.width/2, c.height + 24])
.text('__ likelihood, both sentences →')
.at({textAnchor: 'middle'})
.st({fill: '#000'})
c.svg.selectAll('g.rotate-only.sent-1,g.rotate-only.sent-1').remove()
c.svg.selectAppend('g.rotate-only.sent-1')
.translate([c.width + 20, c.height/2])
.append('text')
.text(`Higher likelihood, ${pair.label1 ? pair.label1 + ' sentence ' : 'sentence one'} →`)
.at({textAnchor: 'start', transform: 'rotate(-90)', x: 20})
.st({fill: util.colors[1]})
c.svg.selectAppend('g.rotate-only.sent-1')
.translate([c.width + 20, c.height/2 + 0])
.append('text')
.text(`← Higher likelihood, ${pair.label0 ? pair.label0 + ' sentence ' : 'sentence two'}`)
.at({textAnchor: 'end', transform: 'rotate(-90)', x: -20})
.st({fill: util.colors[0]})
}
}
function updateSentenceLabels(){
var t0 = tokenizer.tokenize(pair.s0)
var t1 = tokenizer.tokenize(pair.s1)
var i = 0
while (t0[i] == t1[i] && i < t0.length) i++
var j = 1
while (t0[t0.length - j] == t1[t1.length - j] && j < t0.length) j++
pair.label0 = tokens2origStr(t0, pair.s0)
pair.label1 = tokens2origStr(t1, pair.s1)
function tokens2origStr(t, s){
var tokenStr = tokenizer.decode(t.slice(i, -j + 1)).trim()
var lowerStr = s.toLowerCase()
var startI = lowerStr.indexOf(tokenStr)
return s.slice(startI, startI + tokenStr.length)
}
if (
!pair.label0.length ||
!pair.label1.length ||
pair.label0.length > 15 ||
pair.label1.length > 15){
pair.label0 = ''
pair.label1 = ''
}
// console.log(i, j, pair.label0, pair.label1)
}
}
if (window.init) init()
|