Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
import supervision as sv
|
5 |
+
import uuid
|
6 |
+
import torch
|
7 |
+
from tqdm import tqdm
|
8 |
+
import gradio as gr
|
9 |
+
import torch
|
10 |
+
import numpy as np
|
11 |
+
from PIL import Image
|
12 |
+
from transformers import AutoImageProcessor, AutoModelForObjectDetection
|
13 |
+
|
14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
|
16 |
+
processor = AutoImageProcessor.from_pretrained("PekingU/rtdetr_r50vd_coco_o365")
|
17 |
+
model = AutoModelForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd_coco_o365").to(device)
|
18 |
+
|
19 |
+
|
20 |
+
BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator()
|
21 |
+
MASK_ANNOTATOR = sv.MaskAnnotator()
|
22 |
+
LABEL_ANNOTATOR = sv.LabelAnnotator()
|
23 |
+
|
24 |
+
|
25 |
+
def calculate_end_frame_index(source_video_path):
|
26 |
+
video_info = sv.VideoInfo.from_video_path(source_video_path)
|
27 |
+
return min(
|
28 |
+
video_info.total_frames,
|
29 |
+
video_info.fps * 2
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
def annotate_image(
|
34 |
+
input_image,
|
35 |
+
detections,
|
36 |
+
labels
|
37 |
+
) -> np.ndarray:
|
38 |
+
output_image = MASK_ANNOTATOR.annotate(input_image, detections)
|
39 |
+
output_image = BOUNDING_BOX_ANNOTATOR.annotate(output_image, detections)
|
40 |
+
output_image = LABEL_ANNOTATOR.annotate(output_image, detections, labels=labels)
|
41 |
+
return output_image
|
42 |
+
|
43 |
+
def process_video(
|
44 |
+
input_video,
|
45 |
+
progress=gr.Progress(track_tqdm=True)
|
46 |
+
):
|
47 |
+
video_info = sv.VideoInfo.from_video_path(input_video)
|
48 |
+
total = calculate_end_frame_index(input_video)
|
49 |
+
frame_generator = sv.get_video_frames_generator(
|
50 |
+
source_path=input_video,
|
51 |
+
end=total
|
52 |
+
)
|
53 |
+
|
54 |
+
result_file_name = f"{uuid.uuid4()}.mp4"
|
55 |
+
result_file_path = os.path.join("./", result_file_name)
|
56 |
+
with sv.VideoSink(result_file_path, video_info=video_info) as sink:
|
57 |
+
for _ in tqdm(range(total), desc="Processing video.."):
|
58 |
+
frame = next(frame_generator)
|
59 |
+
results = query(Image.fromarray(frame))
|
60 |
+
final_labels = []
|
61 |
+
detections = []
|
62 |
+
|
63 |
+
detections = sv.Detections.from_transformers(results[0])
|
64 |
+
|
65 |
+
for label in results[0]["labels"]:
|
66 |
+
final_labels.append(model.config.id2label[label.item()])
|
67 |
+
frame = annotate_image(
|
68 |
+
input_image=frame,
|
69 |
+
detections=detections,
|
70 |
+
labels=final_labels,
|
71 |
+
)
|
72 |
+
sink.write_frame(frame)
|
73 |
+
return result_file_path
|
74 |
+
|
75 |
+
def query(image):
|
76 |
+
inputs = processor(images=image, return_tensors="pt").to(device)
|
77 |
+
with torch.no_grad():
|
78 |
+
outputs = model(**inputs)
|
79 |
+
target_sizes = torch.Tensor([image.size])
|
80 |
+
|
81 |
+
results = processor.post_process_object_detection(outputs=outputs, threshold=0.6, target_sizes=target_sizes)
|
82 |
+
return results
|
83 |
+
|
84 |
+
with gr.Blocks() as demo:
|
85 |
+
gr.Markdown("## Real Time Object Tracking with RT-DETR")
|
86 |
+
gr.Markdown("This is a demo for object tracking using RT-DETR.")
|
87 |
+
gr.Markdown("Simply upload a video and enter the candidate labels, or try the example below. 👇")
|
88 |
+
with gr.Row():
|
89 |
+
with gr.Column():
|
90 |
+
input_video = gr.Video(
|
91 |
+
label='Input Video'
|
92 |
+
)
|
93 |
+
submit = gr.Button()
|
94 |
+
with gr.Column():
|
95 |
+
output_video = gr.Video(
|
96 |
+
label='Output Video'
|
97 |
+
)
|
98 |
+
gr.Examples(
|
99 |
+
fn=process_video,
|
100 |
+
examples=[["./cats.mp4"]],
|
101 |
+
inputs=[
|
102 |
+
input_video
|
103 |
+
],
|
104 |
+
outputs=output_video
|
105 |
+
)
|
106 |
+
|
107 |
+
submit.click(
|
108 |
+
fn=process_video,
|
109 |
+
inputs=input_video,
|
110 |
+
outputs=output_video
|
111 |
+
)
|
112 |
+
|
113 |
+
demo.launch(debug=True, show_error=True)
|