Spaces:
Running
Running
ShilongLiu
commited on
Commit
·
af720a1
1
Parent(s):
27486e3
cpu only
Browse files- app.py +3 -3
- groundingdino/util/inference.py +7 -6
app.py
CHANGED
@@ -34,10 +34,10 @@ ckpt_repo_id = "ShilongLiu/GroundingDINO"
|
|
34 |
ckpt_filenmae = "groundingdino_swint_ogc.pth"
|
35 |
|
36 |
|
37 |
-
def load_model_hf(model_config_path, repo_id, filename):
|
38 |
args = SLConfig.fromfile(model_config_path)
|
39 |
-
args.device = 'cuda'
|
40 |
model = build_model(args)
|
|
|
41 |
|
42 |
cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
|
43 |
checkpoint = torch.load(cache_file, map_location='cpu')
|
@@ -72,7 +72,7 @@ def run_grounding(input_image, grounding_caption, box_threshold, text_threshold)
|
|
72 |
image_pil: Image = image_transform_grounding_for_vis(init_image)
|
73 |
|
74 |
# run grounidng
|
75 |
-
boxes, logits, phrases = predict(model, image_tensor, grounding_caption, box_threshold, text_threshold)
|
76 |
annotated_frame = annotate(image_source=np.asarray(image_pil), boxes=boxes, logits=logits, phrases=phrases)
|
77 |
image_with_box = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB))
|
78 |
|
|
|
34 |
ckpt_filenmae = "groundingdino_swint_ogc.pth"
|
35 |
|
36 |
|
37 |
+
def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
|
38 |
args = SLConfig.fromfile(model_config_path)
|
|
|
39 |
model = build_model(args)
|
40 |
+
args.device = device
|
41 |
|
42 |
cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
|
43 |
checkpoint = torch.load(cache_file, map_location='cpu')
|
|
|
72 |
image_pil: Image = image_transform_grounding_for_vis(init_image)
|
73 |
|
74 |
# run grounidng
|
75 |
+
boxes, logits, phrases = predict(model, image_tensor, grounding_caption, box_threshold, text_threshold, device='cpu')
|
76 |
annotated_frame = annotate(image_source=np.asarray(image_pil), boxes=boxes, logits=logits, phrases=phrases)
|
77 |
image_with_box = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB))
|
78 |
|
groundingdino/util/inference.py
CHANGED
@@ -21,9 +21,9 @@ def preprocess_caption(caption: str) -> str:
|
|
21 |
return result + "."
|
22 |
|
23 |
|
24 |
-
def load_model(model_config_path: str, model_checkpoint_path: str):
|
25 |
args = SLConfig.fromfile(model_config_path)
|
26 |
-
args.device =
|
27 |
model = build_model(args)
|
28 |
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
|
29 |
model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
|
@@ -50,12 +50,13 @@ def predict(
|
|
50 |
image: torch.Tensor,
|
51 |
caption: str,
|
52 |
box_threshold: float,
|
53 |
-
text_threshold: float
|
|
|
54 |
) -> Tuple[torch.Tensor, torch.Tensor, List[str]]:
|
55 |
caption = preprocess_caption(caption=caption)
|
56 |
-
|
57 |
-
model = model.
|
58 |
-
image = image.
|
59 |
|
60 |
with torch.no_grad():
|
61 |
outputs = model(image[None], captions=[caption])
|
|
|
21 |
return result + "."
|
22 |
|
23 |
|
24 |
+
def load_model(model_config_path: str, model_checkpoint_path: str, device='cuda'):
|
25 |
args = SLConfig.fromfile(model_config_path)
|
26 |
+
args.device = device
|
27 |
model = build_model(args)
|
28 |
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
|
29 |
model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
|
|
|
50 |
image: torch.Tensor,
|
51 |
caption: str,
|
52 |
box_threshold: float,
|
53 |
+
text_threshold: float,
|
54 |
+
device='cuda',
|
55 |
) -> Tuple[torch.Tensor, torch.Tensor, List[str]]:
|
56 |
caption = preprocess_caption(caption=caption)
|
57 |
+
|
58 |
+
model = model.to(device)
|
59 |
+
image = image.to(device)
|
60 |
|
61 |
with torch.no_grad():
|
62 |
outputs = model(image[None], captions=[caption])
|