Spaces:
Sleeping
Sleeping
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from opt_einsum import contract as einsum | |
import copy | |
import dgl | |
from util import base_indices, RTs_by_torsion, xyzs_in_base_frame, rigid_from_3_points | |
def init_lecun_normal(module, scale=1.0): | |
def truncated_normal(uniform, mu=0.0, sigma=1.0, a=-2, b=2): | |
normal = torch.distributions.normal.Normal(0, 1) | |
alpha = (a - mu) / sigma | |
beta = (b - mu) / sigma | |
alpha_normal_cdf = normal.cdf(torch.tensor(alpha)) | |
p = alpha_normal_cdf + (normal.cdf(torch.tensor(beta)) - alpha_normal_cdf) * uniform | |
v = torch.clamp(2 * p - 1, -1 + 1e-8, 1 - 1e-8) | |
x = mu + sigma * np.sqrt(2) * torch.erfinv(v) | |
x = torch.clamp(x, a, b) | |
return x | |
def sample_truncated_normal(shape, scale=1.0): | |
stddev = np.sqrt(scale/shape[-1])/.87962566103423978 # shape[-1] = fan_in | |
return stddev * truncated_normal(torch.rand(shape)) | |
module.weight = torch.nn.Parameter( (sample_truncated_normal(module.weight.shape)) ) | |
return module | |
def init_lecun_normal_param(weight, scale=1.0): | |
def truncated_normal(uniform, mu=0.0, sigma=1.0, a=-2, b=2): | |
normal = torch.distributions.normal.Normal(0, 1) | |
alpha = (a - mu) / sigma | |
beta = (b - mu) / sigma | |
alpha_normal_cdf = normal.cdf(torch.tensor(alpha)) | |
p = alpha_normal_cdf + (normal.cdf(torch.tensor(beta)) - alpha_normal_cdf) * uniform | |
v = torch.clamp(2 * p - 1, -1 + 1e-8, 1 - 1e-8) | |
x = mu + sigma * np.sqrt(2) * torch.erfinv(v) | |
x = torch.clamp(x, a, b) | |
return x | |
def sample_truncated_normal(shape, scale=1.0): | |
stddev = np.sqrt(scale/shape[-1])/.87962566103423978 # shape[-1] = fan_in | |
return stddev * truncated_normal(torch.rand(shape)) | |
weight = torch.nn.Parameter( (sample_truncated_normal(weight.shape)) ) | |
return weight | |
# for gradient checkpointing | |
def create_custom_forward(module, **kwargs): | |
def custom_forward(*inputs): | |
return module(*inputs, **kwargs) | |
return custom_forward | |
def get_clones(module, N): | |
return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) | |
class Dropout(nn.Module): | |
# Dropout entire row or column | |
def __init__(self, broadcast_dim=None, p_drop=0.15): | |
super(Dropout, self).__init__() | |
# give ones with probability of 1-p_drop / zeros with p_drop | |
self.sampler = torch.distributions.bernoulli.Bernoulli(torch.tensor([1-p_drop])) | |
self.broadcast_dim=broadcast_dim | |
self.p_drop=p_drop | |
def forward(self, x): | |
if not self.training: # no drophead during evaluation mode | |
return x | |
shape = list(x.shape) | |
if not self.broadcast_dim == None: | |
shape[self.broadcast_dim] = 1 | |
mask = self.sampler.sample(shape).to(x.device).view(shape) | |
x = mask * x / (1.0 - self.p_drop) | |
return x | |
def rbf(D): | |
# Distance radial basis function | |
D_min, D_max, D_count = 0., 20., 36 | |
D_mu = torch.linspace(D_min, D_max, D_count).to(D.device) | |
D_mu = D_mu[None,:] | |
D_sigma = (D_max - D_min) / D_count | |
D_expand = torch.unsqueeze(D, -1) | |
RBF = torch.exp(-((D_expand - D_mu) / D_sigma)**2) | |
return RBF | |
def get_seqsep(idx): | |
''' | |
Input: | |
- idx: residue indices of given sequence (B,L) | |
Output: | |
- seqsep: sequence separation feature with sign (B, L, L, 1) | |
Sergey found that having sign in seqsep features helps a little | |
''' | |
seqsep = idx[:,None,:] - idx[:,:,None] | |
sign = torch.sign(seqsep) | |
neigh = torch.abs(seqsep) | |
neigh[neigh > 1] = 0.0 # if bonded -- 1.0 / else 0.0 | |
neigh = sign * neigh | |
return neigh.unsqueeze(-1) | |
def make_full_graph(xyz, pair, idx, top_k=64, kmin=9): | |
''' | |
Input: | |
- xyz: current backbone cooordinates (B, L, 3, 3) | |
- pair: pair features from Trunk (B, L, L, E) | |
- idx: residue index from ground truth pdb | |
Output: | |
- G: defined graph | |
''' | |
B, L = xyz.shape[:2] | |
device = xyz.device | |
# seq sep | |
sep = idx[:,None,:] - idx[:,:,None] | |
b,i,j = torch.where(sep.abs() > 0) | |
src = b*L+i | |
tgt = b*L+j | |
G = dgl.graph((src, tgt), num_nodes=B*L).to(device) | |
G.edata['rel_pos'] = (xyz[b,j,:] - xyz[b,i,:]).detach() # no gradient through basis function | |
return G, pair[b,i,j][...,None] | |
def make_topk_graph(xyz, pair, idx, top_k=64, kmin=32, eps=1e-6): | |
''' | |
Input: | |
- xyz: current backbone cooordinates (B, L, 3, 3) | |
- pair: pair features from Trunk (B, L, L, E) | |
- idx: residue index from ground truth pdb | |
Output: | |
- G: defined graph | |
''' | |
B, L = xyz.shape[:2] | |
device = xyz.device | |
# distance map from current CA coordinates | |
D = torch.cdist(xyz, xyz) + torch.eye(L, device=device).unsqueeze(0)*999.9 # (B, L, L) | |
# seq sep | |
sep = idx[:,None,:] - idx[:,:,None] | |
sep = sep.abs() + torch.eye(L, device=device).unsqueeze(0)*999.9 | |
D = D + sep*eps | |
# get top_k neighbors | |
D_neigh, E_idx = torch.topk(D, min(top_k, L), largest=False) # shape of E_idx: (B, L, top_k) | |
topk_matrix = torch.zeros((B, L, L), device=device) | |
topk_matrix.scatter_(2, E_idx, 1.0) | |
# put an edge if any of the 3 conditions are met: | |
# 1) |i-j| <= kmin (connect sequentially adjacent residues) | |
# 2) top_k neighbors | |
cond = torch.logical_or(topk_matrix > 0.0, sep < kmin) | |
b,i,j = torch.where(cond) | |
src = b*L+i | |
tgt = b*L+j | |
G = dgl.graph((src, tgt), num_nodes=B*L).to(device) | |
G.edata['rel_pos'] = (xyz[b,j,:] - xyz[b,i,:]).detach() # no gradient through basis function | |
return G, pair[b,i,j][...,None] | |
def make_rotX(angs, eps=1e-6): | |
B,L = angs.shape[:2] | |
NORM = torch.linalg.norm(angs, dim=-1) + eps | |
RTs = torch.eye(4, device=angs.device).repeat(B,L,1,1) | |
RTs[:,:,1,1] = angs[:,:,0]/NORM | |
RTs[:,:,1,2] = -angs[:,:,1]/NORM | |
RTs[:,:,2,1] = angs[:,:,1]/NORM | |
RTs[:,:,2,2] = angs[:,:,0]/NORM | |
return RTs | |
# rotate about the z axis | |
def make_rotZ(angs, eps=1e-6): | |
B,L = angs.shape[:2] | |
NORM = torch.linalg.norm(angs, dim=-1) + eps | |
RTs = torch.eye(4, device=angs.device).repeat(B,L,1,1) | |
RTs[:,:,0,0] = angs[:,:,0]/NORM | |
RTs[:,:,0,1] = -angs[:,:,1]/NORM | |
RTs[:,:,1,0] = angs[:,:,1]/NORM | |
RTs[:,:,1,1] = angs[:,:,0]/NORM | |
return RTs | |
# rotate about an arbitrary axis | |
def make_rot_axis(angs, u, eps=1e-6): | |
B,L = angs.shape[:2] | |
NORM = torch.linalg.norm(angs, dim=-1) + eps | |
RTs = torch.eye(4, device=angs.device).repeat(B,L,1,1) | |
ct = angs[:,:,0]/NORM | |
st = angs[:,:,1]/NORM | |
u0 = u[:,:,0] | |
u1 = u[:,:,1] | |
u2 = u[:,:,2] | |
RTs[:,:,0,0] = ct+u0*u0*(1-ct) | |
RTs[:,:,0,1] = u0*u1*(1-ct)-u2*st | |
RTs[:,:,0,2] = u0*u2*(1-ct)+u1*st | |
RTs[:,:,1,0] = u0*u1*(1-ct)+u2*st | |
RTs[:,:,1,1] = ct+u1*u1*(1-ct) | |
RTs[:,:,1,2] = u1*u2*(1-ct)-u0*st | |
RTs[:,:,2,0] = u0*u2*(1-ct)-u1*st | |
RTs[:,:,2,1] = u1*u2*(1-ct)+u0*st | |
RTs[:,:,2,2] = ct+u2*u2*(1-ct) | |
return RTs | |
class ComputeAllAtomCoords(nn.Module): | |
def __init__(self): | |
super(ComputeAllAtomCoords, self).__init__() | |
self.base_indices = nn.Parameter(base_indices, requires_grad=False) | |
self.RTs_in_base_frame = nn.Parameter(RTs_by_torsion, requires_grad=False) | |
self.xyzs_in_base_frame = nn.Parameter(xyzs_in_base_frame, requires_grad=False) | |
def forward(self, seq, xyz, alphas, non_ideal=False, use_H=True): | |
B,L = xyz.shape[:2] | |
Rs, Ts = rigid_from_3_points(xyz[...,0,:],xyz[...,1,:],xyz[...,2,:], non_ideal=non_ideal) | |
RTF0 = torch.eye(4).repeat(B,L,1,1).to(device=Rs.device) | |
# bb | |
RTF0[:,:,:3,:3] = Rs | |
RTF0[:,:,:3,3] = Ts | |
# omega | |
RTF1 = torch.einsum( | |
'brij,brjk,brkl->bril', | |
RTF0, self.RTs_in_base_frame[seq,0,:], make_rotX(alphas[:,:,0,:])) | |
# phi | |
RTF2 = torch.einsum( | |
'brij,brjk,brkl->bril', | |
RTF0, self.RTs_in_base_frame[seq,1,:], make_rotX(alphas[:,:,1,:])) | |
# psi | |
RTF3 = torch.einsum( | |
'brij,brjk,brkl->bril', | |
RTF0, self.RTs_in_base_frame[seq,2,:], make_rotX(alphas[:,:,2,:])) | |
# CB bend | |
basexyzs = self.xyzs_in_base_frame[seq] | |
NCr = 0.5*(basexyzs[:,:,2,:3]+basexyzs[:,:,0,:3]) | |
CAr = (basexyzs[:,:,1,:3]) | |
CBr = (basexyzs[:,:,4,:3]) | |
CBrotaxis1 = (CBr-CAr).cross(NCr-CAr) | |
CBrotaxis1 /= torch.linalg.norm(CBrotaxis1, dim=-1, keepdim=True)+1e-8 | |
# CB twist | |
NCp = basexyzs[:,:,2,:3] - basexyzs[:,:,0,:3] | |
NCpp = NCp - torch.sum(NCp*NCr, dim=-1, keepdim=True)/ torch.sum(NCr*NCr, dim=-1, keepdim=True) * NCr | |
CBrotaxis2 = (CBr-CAr).cross(NCpp) | |
CBrotaxis2 /= torch.linalg.norm(CBrotaxis2, dim=-1, keepdim=True)+1e-8 | |
CBrot1 = make_rot_axis(alphas[:,:,7,:], CBrotaxis1 ) | |
CBrot2 = make_rot_axis(alphas[:,:,8,:], CBrotaxis2 ) | |
RTF8 = torch.einsum( | |
'brij,brjk,brkl->bril', | |
RTF0, CBrot1,CBrot2) | |
# chi1 + CG bend | |
RTF4 = torch.einsum( | |
'brij,brjk,brkl,brlm->brim', | |
RTF8, | |
self.RTs_in_base_frame[seq,3,:], | |
make_rotX(alphas[:,:,3,:]), | |
make_rotZ(alphas[:,:,9,:])) | |
# chi2 | |
RTF5 = torch.einsum( | |
'brij,brjk,brkl->bril', | |
RTF4, self.RTs_in_base_frame[seq,4,:],make_rotX(alphas[:,:,4,:])) | |
# chi3 | |
RTF6 = torch.einsum( | |
'brij,brjk,brkl->bril', | |
RTF5,self.RTs_in_base_frame[seq,5,:],make_rotX(alphas[:,:,5,:])) | |
# chi4 | |
RTF7 = torch.einsum( | |
'brij,brjk,brkl->bril', | |
RTF6,self.RTs_in_base_frame[seq,6,:],make_rotX(alphas[:,:,6,:])) | |
RTframes = torch.stack(( | |
RTF0,RTF1,RTF2,RTF3,RTF4,RTF5,RTF6,RTF7,RTF8 | |
),dim=2) | |
xyzs = torch.einsum( | |
'brtij,brtj->brti', | |
RTframes.gather(2,self.base_indices[seq][...,None,None].repeat(1,1,1,4,4)), basexyzs | |
) | |
if use_H: | |
return RTframes, xyzs[...,:3] | |
else: | |
return RTframes, xyzs[...,:14,:3] | |