Spaces:
Sleeping
Sleeping
import sys | |
import numpy as np | |
import torch | |
import scipy.sparse | |
from chemical import * | |
from scoring import * | |
def th_ang_v(ab,bc,eps:float=1e-8): | |
def th_norm(x,eps:float=1e-8): | |
return x.square().sum(-1,keepdim=True).add(eps).sqrt() | |
def th_N(x,alpha:float=0): | |
return x/th_norm(x).add(alpha) | |
ab, bc = th_N(ab),th_N(bc) | |
cos_angle = torch.clamp( (ab*bc).sum(-1), -1, 1) | |
sin_angle = torch.sqrt(1-cos_angle.square() + eps) | |
dih = torch.stack((cos_angle,sin_angle),-1) | |
return dih | |
def th_dih_v(ab,bc,cd): | |
def th_cross(a,b): | |
a,b = torch.broadcast_tensors(a,b) | |
return torch.cross(a,b, dim=-1) | |
def th_norm(x,eps:float=1e-8): | |
return x.square().sum(-1,keepdim=True).add(eps).sqrt() | |
def th_N(x,alpha:float=0): | |
return x/th_norm(x).add(alpha) | |
ab, bc, cd = th_N(ab),th_N(bc),th_N(cd) | |
n1 = th_N( th_cross(ab,bc) ) | |
n2 = th_N( th_cross(bc,cd) ) | |
sin_angle = (th_cross(n1,bc)*n2).sum(-1) | |
cos_angle = (n1*n2).sum(-1) | |
dih = torch.stack((cos_angle,sin_angle),-1) | |
return dih | |
def th_dih(a,b,c,d): | |
return th_dih_v(a-b,b-c,c-d) | |
# More complicated version splits error in CA-N and CA-C (giving more accurate CB position) | |
# It returns the rigid transformation from local frame to global frame | |
def rigid_from_3_points(N, Ca, C, non_ideal=False, eps=1e-8): | |
#N, Ca, C - [B,L, 3] | |
#R - [B,L, 3, 3], det(R)=1, inv(R) = R.T, R is a rotation matrix | |
B,L = N.shape[:2] | |
v1 = C-Ca | |
v2 = N-Ca | |
e1 = v1/(torch.norm(v1, dim=-1, keepdim=True)+eps) | |
u2 = v2-(torch.einsum('bli, bli -> bl', e1, v2)[...,None]*e1) | |
e2 = u2/(torch.norm(u2, dim=-1, keepdim=True)+eps) | |
e3 = torch.cross(e1, e2, dim=-1) | |
R = torch.cat([e1[...,None], e2[...,None], e3[...,None]], axis=-1) #[B,L,3,3] - rotation matrix | |
if non_ideal: | |
v2 = v2/(torch.norm(v2, dim=-1, keepdim=True)+eps) | |
cosref = torch.sum(e1*v2, dim=-1) # cosine of current N-CA-C bond angle | |
costgt = cos_ideal_NCAC.item() | |
cos2del = torch.clamp( cosref*costgt + torch.sqrt((1-cosref*cosref)*(1-costgt*costgt)+eps), min=-1.0, max=1.0 ) | |
cosdel = torch.sqrt(0.5*(1+cos2del)+eps) | |
sindel = torch.sign(costgt-cosref) * torch.sqrt(1-0.5*(1+cos2del)+eps) | |
Rp = torch.eye(3, device=N.device).repeat(B,L,1,1) | |
Rp[:,:,0,0] = cosdel | |
Rp[:,:,0,1] = -sindel | |
Rp[:,:,1,0] = sindel | |
Rp[:,:,1,1] = cosdel | |
R = torch.einsum('blij,bljk->blik', R,Rp) | |
return R, Ca | |
def get_tor_mask(seq, torsion_indices, mask_in=None): | |
B,L = seq.shape[:2] | |
tors_mask = torch.ones((B,L,10), dtype=torch.bool, device=seq.device) | |
tors_mask[...,3:7] = torsion_indices[seq,:,-1] > 0 | |
tors_mask[:,0,1] = False | |
tors_mask[:,-1,0] = False | |
# mask for additional angles | |
tors_mask[:,:,7] = seq!=aa2num['GLY'] | |
tors_mask[:,:,8] = seq!=aa2num['GLY'] | |
tors_mask[:,:,9] = torch.logical_and( seq!=aa2num['GLY'], seq!=aa2num['ALA'] ) | |
tors_mask[:,:,9] = torch.logical_and( tors_mask[:,:,9], seq!=aa2num['UNK'] ) | |
tors_mask[:,:,9] = torch.logical_and( tors_mask[:,:,9], seq!=aa2num['MAS'] ) | |
if mask_in != None: | |
# mask for missing atoms | |
# chis | |
ti0 = torch.gather(mask_in,2,torsion_indices[seq,:,0]) | |
ti1 = torch.gather(mask_in,2,torsion_indices[seq,:,1]) | |
ti2 = torch.gather(mask_in,2,torsion_indices[seq,:,2]) | |
ti3 = torch.gather(mask_in,2,torsion_indices[seq,:,3]) | |
is_valid = torch.stack((ti0, ti1, ti2, ti3), dim=-2).all(dim=-1) | |
tors_mask[...,3:7] = torch.logical_and(tors_mask[...,3:7], is_valid) | |
tors_mask[:,:,7] = torch.logical_and(tors_mask[:,:,7], mask_in[:,:,4]) # CB exist? | |
tors_mask[:,:,8] = torch.logical_and(tors_mask[:,:,8], mask_in[:,:,4]) # CB exist? | |
tors_mask[:,:,9] = torch.logical_and(tors_mask[:,:,9], mask_in[:,:,5]) # XG exist? | |
return tors_mask | |
def get_torsions(xyz_in, seq, torsion_indices, torsion_can_flip, ref_angles, mask_in=None): | |
B,L = xyz_in.shape[:2] | |
tors_mask = get_tor_mask(seq, torsion_indices, mask_in) | |
# torsions to restrain to 0 or 180degree | |
tors_planar = torch.zeros((B, L, 10), dtype=torch.bool, device=xyz_in.device) | |
tors_planar[:,:,5] = seq == aa2num['TYR'] # TYR chi 3 should be planar | |
# idealize given xyz coordinates before computing torsion angles | |
xyz = xyz_in.clone() | |
Rs, Ts = rigid_from_3_points(xyz[...,0,:],xyz[...,1,:],xyz[...,2,:]) | |
Nideal = torch.tensor([-0.5272, 1.3593, 0.000], device=xyz_in.device) | |
Cideal = torch.tensor([1.5233, 0.000, 0.000], device=xyz_in.device) | |
xyz[...,0,:] = torch.einsum('brij,j->bri', Rs, Nideal) + Ts | |
xyz[...,2,:] = torch.einsum('brij,j->bri', Rs, Cideal) + Ts | |
torsions = torch.zeros( (B,L,10,2), device=xyz.device ) | |
# avoid undefined angles for H generation | |
torsions[:,0,1,0] = 1.0 | |
torsions[:,-1,0,0] = 1.0 | |
# omega | |
torsions[:,:-1,0,:] = th_dih(xyz[:,:-1,1,:],xyz[:,:-1,2,:],xyz[:,1:,0,:],xyz[:,1:,1,:]) | |
# phi | |
torsions[:,1:,1,:] = th_dih(xyz[:,:-1,2,:],xyz[:,1:,0,:],xyz[:,1:,1,:],xyz[:,1:,2,:]) | |
# psi | |
torsions[:,:,2,:] = -1 * th_dih(xyz[:,:,0,:],xyz[:,:,1,:],xyz[:,:,2,:],xyz[:,:,3,:]) | |
# chis | |
ti0 = torch.gather(xyz,2,torsion_indices[seq,:,0,None].repeat(1,1,1,3)) | |
ti1 = torch.gather(xyz,2,torsion_indices[seq,:,1,None].repeat(1,1,1,3)) | |
ti2 = torch.gather(xyz,2,torsion_indices[seq,:,2,None].repeat(1,1,1,3)) | |
ti3 = torch.gather(xyz,2,torsion_indices[seq,:,3,None].repeat(1,1,1,3)) | |
torsions[:,:,3:7,:] = th_dih(ti0,ti1,ti2,ti3) | |
# CB bend | |
NC = 0.5*( xyz[:,:,0,:3] + xyz[:,:,2,:3] ) | |
CA = xyz[:,:,1,:3] | |
CB = xyz[:,:,4,:3] | |
t = th_ang_v(CB-CA,NC-CA) | |
t0 = ref_angles[seq][...,0,:] | |
torsions[:,:,7,:] = torch.stack( | |
(torch.sum(t*t0,dim=-1),t[...,0]*t0[...,1]-t[...,1]*t0[...,0]), | |
dim=-1 ) | |
# CB twist | |
NCCA = NC-CA | |
NCp = xyz[:,:,2,:3] - xyz[:,:,0,:3] | |
NCpp = NCp - torch.sum(NCp*NCCA, dim=-1, keepdim=True)/ torch.sum(NCCA*NCCA, dim=-1, keepdim=True) * NCCA | |
t = th_ang_v(CB-CA,NCpp) | |
t0 = ref_angles[seq][...,1,:] | |
torsions[:,:,8,:] = torch.stack( | |
(torch.sum(t*t0,dim=-1),t[...,0]*t0[...,1]-t[...,1]*t0[...,0]), | |
dim=-1 ) | |
# CG bend | |
CG = xyz[:,:,5,:3] | |
t = th_ang_v(CG-CB,CA-CB) | |
t0 = ref_angles[seq][...,2,:] | |
torsions[:,:,9,:] = torch.stack( | |
(torch.sum(t*t0,dim=-1),t[...,0]*t0[...,1]-t[...,1]*t0[...,0]), | |
dim=-1 ) | |
mask0 = torch.isnan(torsions[...,0]).nonzero() | |
mask1 = torch.isnan(torsions[...,1]).nonzero() | |
torsions[mask0[:,0],mask0[:,1],mask0[:,2],0] = 1.0 | |
torsions[mask1[:,0],mask1[:,1],mask1[:,2],1] = 0.0 | |
# alt chis | |
torsions_alt = torsions.clone() | |
torsions_alt[torsion_can_flip[seq,:]] *= -1 | |
return torsions, torsions_alt, tors_mask, tors_planar | |
def get_tips(xyz, seq): | |
B,L = xyz.shape[:2] | |
xyz_tips = torch.gather(xyz, 2, tip_indices.to(xyz.device)[seq][:,:,None,None].expand(-1,-1,-1,3)).reshape(B, L, 3) | |
mask = ~(torch.isnan(xyz_tips[:,:,0])) | |
if torch.isnan(xyz_tips).any(): # replace NaN tip atom with virtual Cb atom | |
# three anchor atoms | |
N = xyz[:,:,0] | |
Ca = xyz[:,:,1] | |
C = xyz[:,:,2] | |
# recreate Cb given N,Ca,C | |
b = Ca - N | |
c = C - Ca | |
a = torch.cross(b, c, dim=-1) | |
Cb = -0.58273431*a + 0.56802827*b - 0.54067466*c + Ca | |
xyz_tips = torch.where(torch.isnan(xyz_tips), Cb, xyz_tips) | |
return xyz_tips, mask | |
# process ideal frames | |
def make_frame(X, Y): | |
Xn = X / torch.linalg.norm(X) | |
Y = Y - torch.dot(Y, Xn) * Xn | |
Yn = Y / torch.linalg.norm(Y) | |
Z = torch.cross(Xn,Yn) | |
Zn = Z / torch.linalg.norm(Z) | |
return torch.stack((Xn,Yn,Zn), dim=-1) | |
def cross_product_matrix(u): | |
B, L = u.shape[:2] | |
matrix = torch.zeros((B, L, 3, 3), device=u.device) | |
matrix[:,:,0,1] = -u[...,2] | |
matrix[:,:,0,2] = u[...,1] | |
matrix[:,:,1,0] = u[...,2] | |
matrix[:,:,1,2] = -u[...,0] | |
matrix[:,:,2,0] = -u[...,1] | |
matrix[:,:,2,1] = u[...,0] | |
return matrix | |
# writepdb | |
def writepdb(filename, atoms, seq, idx_pdb=None, bfacts=None): | |
f = open(filename,"w") | |
ctr = 1 | |
scpu = seq.cpu().squeeze() | |
atomscpu = atoms.cpu().squeeze() | |
if bfacts is None: | |
bfacts = torch.zeros(atomscpu.shape[0]) | |
if idx_pdb is None: | |
idx_pdb = 1 + torch.arange(atomscpu.shape[0]) | |
Bfacts = torch.clamp( bfacts.cpu(), 0, 1) | |
for i,s in enumerate(scpu): | |
if (len(atomscpu.shape)==2): | |
f.write ("%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n"%( | |
"ATOM", ctr, " CA ", num2aa[s], | |
"A", idx_pdb[i], atomscpu[i,0], atomscpu[i,1], atomscpu[i,2], | |
1.0, Bfacts[i] ) ) | |
ctr += 1 | |
elif atomscpu.shape[1]==3: | |
for j,atm_j in enumerate([" N "," CA "," C "]): | |
f.write ("%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n"%( | |
"ATOM", ctr, atm_j, num2aa[s], | |
"A", idx_pdb[i], atomscpu[i,j,0], atomscpu[i,j,1], atomscpu[i,j,2], | |
1.0, Bfacts[i] ) ) | |
ctr += 1 | |
else: | |
natoms = atomscpu.shape[1] | |
if (natoms!=14 and natoms!=27): | |
print ('bad size!', atoms.shape) | |
assert(False) | |
atms = aa2long[s] | |
# his prot hack | |
if (s==8 and torch.linalg.norm( atomscpu[i,9,:]-atomscpu[i,5,:] ) < 1.7): | |
atms = ( | |
" N "," CA "," C "," O "," CB "," CG "," NE2"," CD2"," CE1"," ND1", | |
None, None, None, None," H "," HA ","1HB ","2HB "," HD2"," HE1", | |
" HD1", None, None, None, None, None, None) # his_d | |
for j,atm_j in enumerate(atms): | |
if (j<natoms and atm_j is not None): # and not torch.isnan(atomscpu[i,j,:]).any()): | |
f.write ("%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n"%( | |
"ATOM", ctr, atm_j, num2aa[s], | |
"A", idx_pdb[i], atomscpu[i,j,0], atomscpu[i,j,1], atomscpu[i,j,2], | |
1.0, Bfacts[i] ) ) | |
ctr += 1 | |
# resolve tip atom indices | |
tip_indices = torch.full((22,), 0) | |
for i in range(22): | |
tip_atm = aa2tip[i] | |
atm_long = aa2long[i] | |
tip_indices[i] = atm_long.index(tip_atm) | |
# resolve torsion indices | |
torsion_indices = torch.full((22,4,4),0) | |
torsion_can_flip = torch.full((22,10),False,dtype=torch.bool) | |
for i in range(22): | |
i_l, i_a = aa2long[i], aa2longalt[i] | |
for j in range(4): | |
if torsions[i][j] is None: | |
continue | |
for k in range(4): | |
a = torsions[i][j][k] | |
torsion_indices[i,j,k] = i_l.index(a) | |
if (i_l.index(a) != i_a.index(a)): | |
torsion_can_flip[i,3+j] = True ##bb tors never flip | |
# HIS is a special case | |
torsion_can_flip[8,4]=False | |
# build the mapping from atoms in the full rep (Nx27) to the "alternate" rep | |
allatom_mask = torch.zeros((22,27), dtype=torch.bool) | |
long2alt = torch.zeros((22,27), dtype=torch.long) | |
for i in range(22): | |
i_l, i_lalt = aa2long[i], aa2longalt[i] | |
for j,a in enumerate(i_l): | |
if (a is None): | |
long2alt[i,j] = j | |
else: | |
long2alt[i,j] = i_lalt.index(a) | |
allatom_mask[i,j] = True | |
# bond graph traversal | |
num_bonds = torch.zeros((22,27,27), dtype=torch.long) | |
for i in range(22): | |
num_bonds_i = np.zeros((27,27)) | |
for (bnamei,bnamej) in aabonds[i]: | |
bi,bj = aa2long[i].index(bnamei),aa2long[i].index(bnamej) | |
num_bonds_i[bi,bj] = 1 | |
num_bonds_i = scipy.sparse.csgraph.shortest_path (num_bonds_i,directed=False) | |
num_bonds_i[num_bonds_i>=4] = 4 | |
num_bonds[i,...] = torch.tensor(num_bonds_i) | |
# LJ/LK scoring parameters | |
ljlk_parameters = torch.zeros((22,27,5), dtype=torch.float) | |
lj_correction_parameters = torch.zeros((22,27,4), dtype=bool) # donor/acceptor/hpol/disulf | |
for i in range(22): | |
for j,a in enumerate(aa2type[i]): | |
if (a is not None): | |
ljlk_parameters[i,j,:] = torch.tensor( type2ljlk[a] ) | |
lj_correction_parameters[i,j,0] = (type2hb[a]==HbAtom.DO)+(type2hb[a]==HbAtom.DA) | |
lj_correction_parameters[i,j,1] = (type2hb[a]==HbAtom.AC)+(type2hb[a]==HbAtom.DA) | |
lj_correction_parameters[i,j,2] = (type2hb[a]==HbAtom.HP) | |
lj_correction_parameters[i,j,3] = (a=="SH1" or a=="HS") | |
# hbond scoring parameters | |
def donorHs(D,bonds,atoms): | |
dHs = [] | |
for (i,j) in bonds: | |
if (i==D): | |
idx_j = atoms.index(j) | |
if (idx_j>=14): # if atom j is a hydrogen | |
dHs.append(idx_j) | |
if (j==D): | |
idx_i = atoms.index(i) | |
if (idx_i>=14): # if atom j is a hydrogen | |
dHs.append(idx_i) | |
assert (len(dHs)>0) | |
return dHs | |
def acceptorBB0(A,hyb,bonds,atoms): | |
if (hyb == HbHybType.SP2): | |
for (i,j) in bonds: | |
if (i==A): | |
B = atoms.index(j) | |
if (B<14): | |
break | |
if (j==A): | |
B = atoms.index(i) | |
if (B<14): | |
break | |
for (i,j) in bonds: | |
if (i==atoms[B]): | |
B0 = atoms.index(j) | |
if (B0<14): | |
break | |
if (j==atoms[B]): | |
B0 = atoms.index(i) | |
if (B0<14): | |
break | |
elif (hyb == HbHybType.SP3 or hyb == HbHybType.RING): | |
for (i,j) in bonds: | |
if (i==A): | |
B = atoms.index(j) | |
if (B<14): | |
break | |
if (j==A): | |
B = atoms.index(i) | |
if (B<14): | |
break | |
for (i,j) in bonds: | |
if (i==A and j!=atoms[B]): | |
B0 = atoms.index(j) | |
break | |
if (j==A and i!=atoms[B]): | |
B0 = atoms.index(i) | |
break | |
return B,B0 | |
hbtypes = torch.full((22,27,3),-1, dtype=torch.long) # (donortype, acceptortype, acchybtype) | |
hbbaseatoms = torch.full((22,27,2),-1, dtype=torch.long) # (B,B0) for acc; (D,-1) for don | |
hbpolys = torch.zeros((HbDonType.NTYPES,HbAccType.NTYPES,3,15)) # weight,xmin,xmax,ymin,ymax,c9,...,c0 | |
for i in range(22): | |
for j,a in enumerate(aa2type[i]): | |
if (a in type2dontype): | |
j_hs = donorHs(aa2long[i][j],aabonds[i],aa2long[i]) | |
for j_h in j_hs: | |
hbtypes[i,j_h,0] = type2dontype[a] | |
hbbaseatoms[i,j_h,0] = j | |
if (a in type2acctype): | |
j_b, j_b0 = acceptorBB0(aa2long[i][j],type2hybtype[a],aabonds[i],aa2long[i]) | |
hbtypes[i,j,1] = type2acctype[a] | |
hbtypes[i,j,2] = type2hybtype[a] | |
hbbaseatoms[i,j,0] = j_b | |
hbbaseatoms[i,j,1] = j_b0 | |
for i in range(HbDonType.NTYPES): | |
for j in range(HbAccType.NTYPES): | |
weight = dontype2wt[i]*acctype2wt[j] | |
pdist,pbah,pahd = hbtypepair2poly[(i,j)] | |
xrange,yrange,coeffs = hbpolytype2coeffs[pdist] | |
hbpolys[i,j,0,0] = weight | |
hbpolys[i,j,0,1:3] = torch.tensor(xrange) | |
hbpolys[i,j,0,3:5] = torch.tensor(yrange) | |
hbpolys[i,j,0,5:] = torch.tensor(coeffs) | |
xrange,yrange,coeffs = hbpolytype2coeffs[pahd] | |
hbpolys[i,j,1,0] = weight | |
hbpolys[i,j,1,1:3] = torch.tensor(xrange) | |
hbpolys[i,j,1,3:5] = torch.tensor(yrange) | |
hbpolys[i,j,1,5:] = torch.tensor(coeffs) | |
xrange,yrange,coeffs = hbpolytype2coeffs[pbah] | |
hbpolys[i,j,2,0] = weight | |
hbpolys[i,j,2,1:3] = torch.tensor(xrange) | |
hbpolys[i,j,2,3:5] = torch.tensor(yrange) | |
hbpolys[i,j,2,5:] = torch.tensor(coeffs) | |
# kinematic parameters | |
base_indices = torch.full((22,27),0, dtype=torch.long) | |
xyzs_in_base_frame = torch.ones((22,27,4)) | |
RTs_by_torsion = torch.eye(4).repeat(22,7,1,1) | |
reference_angles = torch.ones((22,3,2)) | |
for i in range(22): | |
i_l = aa2long[i] | |
for name, base, coords in ideal_coords[i]: | |
idx = i_l.index(name) | |
base_indices[i,idx] = base | |
xyzs_in_base_frame[i,idx,:3] = torch.tensor(coords) | |
# omega frame | |
RTs_by_torsion[i,0,:3,:3] = torch.eye(3) | |
RTs_by_torsion[i,0,:3,3] = torch.zeros(3) | |
# phi frame | |
RTs_by_torsion[i,1,:3,:3] = make_frame( | |
xyzs_in_base_frame[i,0,:3] - xyzs_in_base_frame[i,1,:3], | |
torch.tensor([1.,0.,0.]) | |
) | |
RTs_by_torsion[i,1,:3,3] = xyzs_in_base_frame[i,0,:3] | |
# psi frame | |
RTs_by_torsion[i,2,:3,:3] = make_frame( | |
xyzs_in_base_frame[i,2,:3] - xyzs_in_base_frame[i,1,:3], | |
xyzs_in_base_frame[i,1,:3] - xyzs_in_base_frame[i,0,:3] | |
) | |
RTs_by_torsion[i,2,:3,3] = xyzs_in_base_frame[i,2,:3] | |
# chi1 frame | |
if torsions[i][0] is not None: | |
a0,a1,a2 = torsion_indices[i,0,0:3] | |
RTs_by_torsion[i,3,:3,:3] = make_frame( | |
xyzs_in_base_frame[i,a2,:3]-xyzs_in_base_frame[i,a1,:3], | |
xyzs_in_base_frame[i,a0,:3]-xyzs_in_base_frame[i,a1,:3], | |
) | |
RTs_by_torsion[i,3,:3,3] = xyzs_in_base_frame[i,a2,:3] | |
# chi2~4 frame | |
for j in range(1,4): | |
if torsions[i][j] is not None: | |
a2 = torsion_indices[i,j,2] | |
if ((i==18 and j==2) or (i==8 and j==2)): # TYR CZ-OH & HIS CE1-HE1 a special case | |
a0,a1 = torsion_indices[i,j,0:2] | |
RTs_by_torsion[i,3+j,:3,:3] = make_frame( | |
xyzs_in_base_frame[i,a2,:3]-xyzs_in_base_frame[i,a1,:3], | |
xyzs_in_base_frame[i,a0,:3]-xyzs_in_base_frame[i,a1,:3] ) | |
else: | |
RTs_by_torsion[i,3+j,:3,:3] = make_frame( | |
xyzs_in_base_frame[i,a2,:3], | |
torch.tensor([-1.,0.,0.]), ) | |
RTs_by_torsion[i,3+j,:3,3] = xyzs_in_base_frame[i,a2,:3] | |
# CB/CG angles | |
NCr = 0.5*(xyzs_in_base_frame[i,0,:3]+xyzs_in_base_frame[i,2,:3]) | |
CAr = xyzs_in_base_frame[i,1,:3] | |
CBr = xyzs_in_base_frame[i,4,:3] | |
CGr = xyzs_in_base_frame[i,5,:3] | |
reference_angles[i,0,:]=th_ang_v(CBr-CAr,NCr-CAr) | |
NCp = xyzs_in_base_frame[i,2,:3]-xyzs_in_base_frame[i,0,:3] | |
NCpp = NCp - torch.dot(NCp,NCr)/ torch.dot(NCr,NCr) * NCr | |
reference_angles[i,1,:]=th_ang_v(CBr-CAr,NCpp) | |
reference_angles[i,2,:]=th_ang_v(CGr,torch.tensor([-1.,0.,0.])) | |
def get_rmsd(a, b, eps=1e-6): | |
''' | |
align crds b to a : always use all alphas | |
expexted tensor of shape (L,3) | |
jake's torch adapted version | |
''' | |
assert a.shape == b.shape, 'make sure tensors are the same size' | |
L = a.shape[0] | |
assert a.shape == torch.Size([L,3]), 'make sure tensors are in format [L,3]' | |
# center to CA centroid | |
a = a - a.mean(dim=0) | |
b = b - b.mean(dim=0) | |
# Computation of the covariance matrix | |
C = torch.einsum('kj,ji->ki', torch.transpose(b.type(torch.float32),0,1), a.type(torch.float32)) | |
# Compute optimal rotation matrix using SVD | |
V, S, W = torch.linalg.svd(C) | |
# get sign to ensure right-handedness | |
d = torch.ones([3,3]) | |
d[:,-1] = torch.sign(torch.linalg.det(V)*torch.linalg.det(W)) | |
# Rotation matrix U | |
U = torch.einsum('kj,ji->ki',(d*V),W) | |
# Rotate xyz_hal | |
rP = torch.einsum('kj,ji->ki',b.type(torch.float32),U.type(torch.float32)) | |
L = rP.shape[0] | |
rmsd = torch.sqrt(torch.sum((rP-a)*(rP-a), axis=(0,1)) / L + eps) | |
return rmsd, U | |