Spaces:
Sleeping
Sleeping
import numpy as np | |
import scipy | |
import scipy.spatial | |
import string | |
import os,re | |
import random | |
import util | |
import gzip | |
to1letter = { | |
"ALA":'A', "ARG":'R', "ASN":'N', "ASP":'D', "CYS":'C', | |
"GLN":'Q', "GLU":'E', "GLY":'G', "HIS":'H', "ILE":'I', | |
"LEU":'L', "LYS":'K', "MET":'M', "PHE":'F', "PRO":'P', | |
"SER":'S', "THR":'T', "TRP":'W', "TYR":'Y', "VAL":'V' } | |
# read A3M and convert letters into | |
# integers in the 0..20 range, | |
# also keep track of insertions | |
def parse_a3m(filename): | |
msa = [] | |
ins = [] | |
table = str.maketrans(dict.fromkeys(string.ascii_lowercase)) | |
#print(filename) | |
if filename.split('.')[-1] == 'gz': | |
fp = gzip.open(filename, 'rt') | |
else: | |
fp = open(filename, 'r') | |
# read file line by line | |
for line in fp: | |
# skip labels | |
if line[0] == '>': | |
continue | |
# remove right whitespaces | |
line = line.rstrip() | |
if len(line) == 0: | |
continue | |
# remove lowercase letters and append to MSA | |
msa.append(line.translate(table)) | |
# sequence length | |
L = len(msa[-1]) | |
# 0 - match or gap; 1 - insertion | |
a = np.array([0 if c.isupper() or c=='-' else 1 for c in line]) | |
i = np.zeros((L)) | |
if np.sum(a) > 0: | |
# positions of insertions | |
pos = np.where(a==1)[0] | |
# shift by occurrence | |
a = pos - np.arange(pos.shape[0]) | |
# position of insertions in cleaned sequence | |
# and their length | |
pos,num = np.unique(a, return_counts=True) | |
# append to the matrix of insetions | |
i[pos] = num | |
ins.append(i) | |
if len(msa) == 10000: | |
break | |
# convert letters into numbers | |
alphabet = np.array(list("ARNDCQEGHILKMFPSTWYV-"), dtype='|S1').view(np.uint8) | |
msa = np.array([list(s) for s in msa], dtype='|S1').view(np.uint8) | |
for i in range(alphabet.shape[0]): | |
msa[msa == alphabet[i]] = i | |
# treat all unknown characters as gaps | |
msa[msa > 20] = 20 | |
ins = np.array(ins, dtype=np.uint8) | |
return msa,ins | |
# read and extract xyz coords of N,Ca,C atoms | |
# from a PDB file | |
def parse_pdb(filename): | |
lines = open(filename,'r').readlines() | |
return parse_pdb_lines(lines) | |
#''' | |
def parse_pdb_lines(lines): | |
# indices of residues observed in the structure | |
idx_s = [int(l[22:26]) for l in lines if l[:4]=="ATOM" and l[12:16].strip()=="CA"] | |
# 4 BB + up to 10 SC atoms | |
xyz = np.full((len(idx_s), 14, 3), np.nan, dtype=np.float32) | |
for l in lines: | |
if l[:4] != "ATOM": | |
continue | |
resNo, atom, aa = int(l[22:26]), l[12:16], l[17:20] | |
idx = idx_s.index(resNo) | |
for i_atm, tgtatm in enumerate(util.aa2long[util.aa2num[aa]]): | |
if tgtatm == atom: | |
xyz[idx,i_atm,:] = [float(l[30:38]), float(l[38:46]), float(l[46:54])] | |
break | |
# save atom mask | |
mask = np.logical_not(np.isnan(xyz[...,0])) | |
xyz[np.isnan(xyz[...,0])] = 0.0 | |
return xyz,mask,np.array(idx_s) | |
#''' | |
''' | |
def parse_pdb_lines(lines): | |
# indices of residues observed in the structure | |
#idx_s = [int(l[22:26]) for l in lines if l[:4]=="ATOM" and l[12:16].strip()=="CA"] | |
res = [(l[22:26],l[17:20]) for l in lines if l[:4]=="ATOM" and l[12:16].strip()=="CA"] | |
idx_s = [int(r[0]) for r in res] | |
seq = [util.aa2num[r[1]] if r[1] in util.aa2num.keys() else 20 for r in res] | |
# 4 BB + up to 10 SC atoms | |
xyz = np.full((len(idx_s), 14, 3), np.nan, dtype=np.float32) | |
for l in lines: | |
if l[:4] != "ATOM": | |
continue | |
resNo, atom, aa = int(l[22:26]), l[12:16], l[17:20] | |
idx = idx_s.index(resNo) | |
for i_atm, tgtatm in enumerate(util.aa2long[util.aa2num[aa]]): | |
if tgtatm == atom: | |
xyz[idx,i_atm,:] = [float(l[30:38]), float(l[38:46]), float(l[46:54])] | |
break | |
# save atom mask | |
mask = np.logical_not(np.isnan(xyz[...,0])) | |
xyz[np.isnan(xyz[...,0])] = 0.0 | |
return xyz,mask,np.array(idx_s), np.array(seq) | |
''' | |
def parse_templates(item, params): | |
# init FFindexDB of templates | |
### and extract template IDs | |
### present in the DB | |
ffdb = FFindexDB(read_index(params['FFDB']+'_pdb.ffindex'), | |
read_data(params['FFDB']+'_pdb.ffdata')) | |
#ffids = set([i.name for i in ffdb.index]) | |
# process tabulated hhsearch output to get | |
# matched positions and positional scores | |
infile = params['DIR']+'/hhr/'+item[-2:]+'/'+item+'.atab' | |
hits = [] | |
for l in open(infile, "r").readlines(): | |
if l[0]=='>': | |
key = l[1:].split()[0] | |
hits.append([key,[],[]]) | |
elif "score" in l or "dssp" in l: | |
continue | |
else: | |
hi = l.split()[:5]+[0.0,0.0,0.0] | |
hits[-1][1].append([int(hi[0]),int(hi[1])]) | |
hits[-1][2].append([float(hi[2]),float(hi[3]),float(hi[4])]) | |
# get per-hit statistics from an .hhr file | |
# (!!! assume that .hhr and .atab have the same hits !!!) | |
# [Probab, E-value, Score, Aligned_cols, | |
# Identities, Similarity, Sum_probs, Template_Neff] | |
lines = open(infile[:-4]+'hhr', "r").readlines() | |
pos = [i+1 for i,l in enumerate(lines) if l[0]=='>'] | |
for i,posi in enumerate(pos): | |
hits[i].append([float(s) for s in re.sub('[=%]',' ',lines[posi]).split()[1::2]]) | |
# parse templates from FFDB | |
for hi in hits: | |
#if hi[0] not in ffids: | |
# continue | |
entry = get_entry_by_name(hi[0], ffdb.index) | |
if entry == None: | |
continue | |
data = read_entry_lines(entry, ffdb.data) | |
hi += list(parse_pdb_lines(data)) | |
# process hits | |
counter = 0 | |
xyz,qmap,mask,f0d,f1d,ids = [],[],[],[],[],[] | |
for data in hits: | |
if len(data)<7: | |
continue | |
qi,ti = np.array(data[1]).T | |
_,sel1,sel2 = np.intersect1d(ti, data[6], return_indices=True) | |
ncol = sel1.shape[0] | |
if ncol < 10: | |
continue | |
ids.append(data[0]) | |
f0d.append(data[3]) | |
f1d.append(np.array(data[2])[sel1]) | |
xyz.append(data[4][sel2]) | |
mask.append(data[5][sel2]) | |
qmap.append(np.stack([qi[sel1]-1,[counter]*ncol],axis=-1)) | |
counter += 1 | |
xyz = np.vstack(xyz).astype(np.float32) | |
mask = np.vstack(mask).astype(np.bool) | |
qmap = np.vstack(qmap).astype(np.long) | |
f0d = np.vstack(f0d).astype(np.float32) | |
f1d = np.vstack(f1d).astype(np.float32) | |
ids = ids | |
return xyz,mask,qmap,f0d,f1d,ids | |