Spaces:
Sleeping
Sleeping
import enum | |
import math | |
import numpy as np | |
import torch as th | |
########################################################################################## | |
# DIFFUSION CODE BASE FOR PROTEIN SEQUENCE DIFFUSION WAS ADAPTED FROM LM-DIFFUSION # | |
# (https://github.com/XiangLi1999/Diffusion-LM) # | |
########################################################################################## | |
class GaussianDiffusion_SEQDIFF: | |
""" | |
T = number of timesteps to set up diffuser with | |
schedule = type of noise schedule to use linear, cosine, gaussian | |
noise = type of ditribution to sample from; DEFAULT - normal_gaussian | |
""" | |
def __init__(self, | |
T=1000, | |
schedule='sqrt', | |
sample_distribution='normal', | |
sample_distribution_gmm_means=[-1.0, 1.0], | |
sample_distribution_gmm_variances=[1.0, 1.0], | |
F=1, | |
): | |
# Use float64 for accuracy. | |
betas = np.array(get_named_beta_schedule(schedule, T), dtype=np.float64) | |
self.betas = betas | |
assert len(betas.shape) == 1, "betas must be 1-D" | |
assert (betas > 0).all() and (betas <= 1).all() | |
self.num_timesteps = int(betas.shape[0]) | |
self.F = F | |
alphas = 1.0 - betas | |
self.alphas_cumprod = np.cumprod(alphas, axis=0) | |
self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1]) | |
self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0) | |
assert self.alphas_cumprod_prev.shape == (self.num_timesteps,) | |
# calculations for posterior q(x_{t-1} | x_t, x_0) | |
self.posterior_variance = (betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)) | |
# log calculation clipped because the posterior variance is 0 at the | |
# beginning of the diffusion chain. | |
self.posterior_log_variance_clipped = np.log(np.append(self.posterior_variance[1], self.posterior_variance[1:])) | |
self.posterior_mean_coef1 = (betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)) | |
self.posterior_mean_coef2 = ((1.0 - self.alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - self.alphas_cumprod)) | |
# calculations for diffusion q(x_t | x_{t-1}) and others | |
self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod) | |
self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod) | |
self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod) | |
self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod) | |
# sample_distribution_params | |
self.sample_distribution = sample_distribution | |
self.sample_distribution_gmm_means = [float(mean) for mean in sample_distribution_gmm_means] | |
self.sample_distribution_gmm_variances = [float(variance) for variance in sample_distribution_gmm_variances] | |
if self.sample_distribution == 'normal': | |
self.noise_function = th.randn_like | |
else: | |
self.noise_function = self.randnmixture_like | |
def q_mean_variance(self, x_start, t): | |
""" | |
Get the distribution q(x_t | x_0). | |
:param x_start: the [N x C x ...] tensor of noiseless inputs. | |
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
:return: A tuple (mean, variance, log_variance), all of x_start's shape. | |
""" | |
mean = ( | |
_extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start | |
) | |
variance = _extract(1.0 - self.alphas_cumprod, t, x_start.shape) | |
log_variance = _extract( | |
self.log_one_minus_alphas_cumprod, t, x_start.shape | |
) | |
return mean, variance, log_variance | |
def q_sample(self, x_start, t, mask=None, DEVICE=None): | |
""" | |
Diffuse the data for a given number of diffusion steps. | |
In other words, sample from q(x_t | x_0). | |
:param x_start: the initial data batch. | |
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
:param noise: if specified, the split-out normal noise. | |
:return: A noisy version of x_start. | |
""" | |
# noise_function is determined in init depending on type of noise specified | |
noise = self.noise_function(x_start)*(self.F**2) | |
if DEVICE != None: | |
noise = noise.to(DEVICE) | |
assert noise.shape == x_start.shape | |
x_sample = ( | |
_extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start | |
+ _extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) | |
* noise) | |
if mask is not None: | |
x_sample[mask]=x_start[mask] | |
return x_sample | |
def q_posterior_mean_variance(self, x_start, x_t, t): | |
""" | |
Compute the mean and variance of the diffusion posterior: | |
q(x_{t-1} | x_t, x_0) | |
""" | |
assert x_start.shape == x_t.shape | |
posterior_mean = (_extract(self.posterior_mean_coef1, t, x_t.shape) * x_start | |
+ _extract(self.posterior_mean_coef2, t, x_t.shape) * x_t) | |
posterior_variance = _extract(self.posterior_variance, t, x_t.shape) | |
posterior_log_variance_clipped = _extract(self.posterior_log_variance_clipped, t, x_t.shape) | |
assert ( | |
posterior_mean.shape[0] | |
== posterior_variance.shape[0] | |
== posterior_log_variance_clipped.shape[0] | |
== x_start.shape[0] | |
) | |
return posterior_mean, posterior_variance, posterior_log_variance_clipped | |
def randnmixture_like(self, tensor_like, number_normal=3, weights_normal=None): | |
if self.sample_distribution_gmm_means and self.sample_distribution_gmm_variances: | |
assert len(self.sample_distribution_gmm_means) == len(self.sample_distribution_gmm_variances) | |
if not weights_normal: | |
mix = th.distributions.Categorical(th.ones(len(self.sample_distribution_gmm_means))) #number_normal | |
else: | |
assert len(weights_normal) == number_normal | |
mix = th.distributions.Categorical(weights_normal) | |
#comp = torch.distributions.Normal(torch.randn(number_normal), torch.rand(number_normal)) | |
comp = th.distributions.Normal(th.tensor(self.sample_distribution_gmm_means), th.tensor(self.sample_distribution_gmm_variances)) | |
#comp = torch.distributions.Normal([-3, 3], [1, 1]) | |
#comp = torch.distributions.Normal([-3, 0, 3], [1, 1, 1]) | |
#comp = torch.distributions.Normal([-3, 0, 3], [1, 1, 1]) | |
gmm = th.distributions.mixture_same_family.MixtureSameFamily(mix, comp) | |
return th.tensor([gmm.sample() for _ in range(np.prod(tensor_like.shape))]).reshape(tensor_like.shape) | |
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps): | |
""" | |
Get a pre-defined beta schedule for the given name. | |
The beta schedule library consists of beta schedules which remain similar | |
in the limit of num_diffusion_timesteps. | |
Beta schedules may be added, but should not be removed or changed once | |
they are committed to maintain backwards compatibility. | |
""" | |
if schedule_name == "linear": | |
# Linear schedule from Ho et al, extended to work for any number of | |
# diffusion steps. | |
scale = 1000 / num_diffusion_timesteps | |
beta_start = scale * 0.0001 | |
beta_end = scale * 0.02 | |
return np.linspace(beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64) | |
elif schedule_name == "cosine": | |
return betas_for_alpha_bar(num_diffusion_timesteps, lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,) | |
elif schedule_name == 'sqrt': | |
return betas_for_alpha_bar(num_diffusion_timesteps, lambda t: 1-np.sqrt(t + 0.0001),) | |
else: | |
raise NotImplementedError(f"unknown beta schedule: {schedule_name}") | |
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): | |
""" | |
Create a beta schedule that discretizes the given alpha_t_bar function, | |
which defines the cumulative product of (1-beta) over time from t = [0,1]. | |
:param num_diffusion_timesteps: the number of betas to produce. | |
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and | |
produces the cumulative product of (1-beta) up to that | |
part of the diffusion process. | |
:param max_beta: the maximum beta to use; use values lower than 1 to | |
prevent singularities. | |
""" | |
betas = [] | |
for i in range(num_diffusion_timesteps): | |
t1 = i / num_diffusion_timesteps | |
t2 = (i + 1) / num_diffusion_timesteps | |
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) | |
return np.array(betas) | |
def _extract(arr, timesteps, broadcast_shape): | |
""" | |
Extract values from a 1-D numpy array for a batch of indices. | |
:param arr: the 1-D numpy array. | |
:param timesteps: a tensor of indices into the array to extract. | |
:param broadcast_shape: a larger shape of K dimensions with the batch | |
dimension equal to the length of timesteps. | |
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. | |
""" | |
res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float() | |
while len(res.shape) < len(broadcast_shape): | |
res = res[..., None] | |
return res.expand(broadcast_shape) | |