File size: 34,364 Bytes
59a9ccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
import math
import os
import csv
import random
import torch
from torch.utils import data
import numpy as np
from dateutil import parser
import contigs
from util import *
from kinematics import *
import pandas as pd
import sys
import torch.nn as nn
from icecream import ic
def write_pdb(filename, seq, atoms, Bfacts=None, prefix=None, chains=None):
        L = len(seq)
        ctr = 1 
        seq = seq.long()
        with open(filename, 'wt') as f:
            for i,s in enumerate(seq):
                if chains is None:
                    chain='A'
                else:
                    chain=chains[i]

                if (len(atoms.shape)==2):
                    f.write ("%-6s%5s %4s %3s %s%4d    %8.3f%8.3f%8.3f%6.2f%6.2f\n"%(
                            "ATOM", ctr, " CA ", util.num2aa[s], 
                            chain, i+1, atoms[i,0], atoms[i,1], atoms[i,2],
                            1.0, Bfacts[i] ) ) 
                    ctr += 1
    
                elif atoms.shape[1]==3:
                    for j,atm_j in enumerate((" N  "," CA "," C  ")):
                        f.write ("%-6s%5s %4s %3s %s%4d    %8.3f%8.3f%8.3f%6.2f%6.2f\n"%(
                                "ATOM", ctr, atm_j, num2aa[s], 
                                chain, i+1, atoms[i,j,0], atoms[i,j,1], atoms[i,j,2],
                                1.0, Bfacts[i] ) ) 
                        ctr += 1    
                else:
                    atms = aa2long[s]
                    for j,atm_j in enumerate(atms):
                        if (atm_j is not None):
                            f.write ("%-6s%5s %4s %3s %s%4d    %8.3f%8.3f%8.3f%6.2f%6.2f\n"%(
                                "ATOM", ctr, atm_j, num2aa[s], 
                                chain, i+1, atoms[i,j,0], atoms[i,j,1], atoms[i,j,2],
                                1.0, Bfacts[i] ) ) 
                            ctr += 1

def preprocess(xyz_t, t1d, DEVICE, masks_1d, ti_dev=None, ti_flip=None, ang_ref=None):

      B, _, L, _, _ = xyz_t.shape

      seq_tmp = t1d[...,:-1].argmax(dim=-1).reshape(-1,L).to(DEVICE, non_blocking=True)
      alpha, _, alpha_mask,_ = get_torsions(xyz_t.reshape(-1,L,27,3), seq_tmp, ti_dev, ti_flip, ang_ref)
      alpha_mask = torch.logical_and(alpha_mask, ~torch.isnan(alpha[...,0]))
      alpha[torch.isnan(alpha)] = 0.0
      alpha = alpha.reshape(B,-1,L,10,2)
      alpha_mask = alpha_mask.reshape(B,-1,L,10,1)
      alpha_t = torch.cat((alpha, alpha_mask), dim=-1).reshape(B,-1,L,30)
      #t1d = torch.cat((t1d, chis.reshape(B,-1,L,30)), dim=-1)
      xyz_t = get_init_xyz(xyz_t)
      xyz_prev = xyz_t[:,0]
      state = t1d[:,0]
      alpha = alpha[:,0]
      t2d=xyz_to_t2d(xyz_t)
      return (t2d, alpha, alpha_mask, alpha_t, t1d, xyz_t, xyz_prev, state)

def TemplFeaturizeFixbb(seq, conf_1d=None):
    """  
    Template 1D featurizer for fixed BB examples :
    Parameters:
        seq (torch.tensor, required): Integer sequence 
        conf_1d (torch.tensor, optional): Precalcualted confidence tensor
    """
    L = seq.shape[-1]
    t1d  = torch.nn.functional.one_hot(seq, num_classes=21) # one hot sequence 
    if conf_1d is None:
        conf = torch.ones_like(seq)[...,None]
    else:
        conf = conf_1d[:,None]
    t1d = torch.cat((t1d, conf), dim=-1)
    return t1d  

def MSAFeaturize_fixbb(msa, params):
    '''
    Input: full msa information
    Output: Single sequence, with some percentage of amino acids mutated (but no resides 'masked')
    
    This is modified from autofold2, to remove mutations of the single sequence
    '''
    N, L = msa.shape
    # raw MSA profile
    raw_profile = torch.nn.functional.one_hot(msa, num_classes=22)
    raw_profile = raw_profile.float().mean(dim=0)

    b_seq = list()
    b_msa_clust = list()
    b_msa_seed = list()
    b_msa_extra = list()
    b_mask_pos = list()
    for i_cycle in range(params['MAXCYCLE']):
        assert torch.max(msa) < 22
        msa_onehot = torch.nn.functional.one_hot(msa[:1],num_classes=22)
        msa_fakeprofile_onehot = torch.nn.functional.one_hot(msa[:1],num_classes=26) #add the extra two indel planes, which will be set to zero
        msa_full_onehot = torch.cat((msa_onehot, msa_fakeprofile_onehot), dim=-1)

        #make fake msa_extra
        msa_extra_onehot = torch.nn.functional.one_hot(msa[:1],num_classes=25)

        #make fake msa_clust and mask_pos
        msa_clust = msa[:1]
        mask_pos = torch.full_like(msa_clust, 1).bool()
        b_seq.append(msa[0].clone())
        b_msa_seed.append(msa_full_onehot[:1].clone()) #masked single sequence onehot (nb no mask so just single sequence onehot)
        b_msa_extra.append(msa_extra_onehot[:1].clone()) #masked single sequence onehot (nb no mask so just single sequence onehot)
        b_msa_clust.append(msa_clust[:1].clone()) #unmasked original single sequence 
        b_mask_pos.append(mask_pos[:1].clone()) #mask positions in single sequence (all zeros)

    b_seq = torch.stack(b_seq)
    b_msa_clust = torch.stack(b_msa_clust)
    b_msa_seed = torch.stack(b_msa_seed)
    b_msa_extra = torch.stack(b_msa_extra)
    b_mask_pos = torch.stack(b_mask_pos)

    return b_seq, b_msa_clust, b_msa_seed, b_msa_extra, b_mask_pos

def MSAFeaturize(msa, params):
    '''
    Input: full msa information
    Output: Single sequence, with some percentage of amino acids mutated (but no resides 'masked')
    
    This is modified from autofold2, to remove mutations of the single sequence
    '''
    N, L = msa.shape
    # raw MSA profile
    raw_profile = torch.nn.functional.one_hot(msa, num_classes=22)
    raw_profile = raw_profile.float().mean(dim=0)

    b_seq = list()
    b_msa_clust = list()
    b_msa_seed = list()
    b_msa_extra = list()
    b_mask_pos = list()
    for i_cycle in range(params['MAXCYCLE']):
        assert torch.max(msa) < 22
        msa_onehot = torch.nn.functional.one_hot(msa,num_classes=22)
        msa_fakeprofile_onehot = torch.nn.functional.one_hot(msa,num_classes=26) #add the extra two indel planes, which will be set to zero
        msa_full_onehot = torch.cat((msa_onehot, msa_fakeprofile_onehot), dim=-1)

        #make fake msa_extra
        msa_extra_onehot = torch.nn.functional.one_hot(msa,num_classes=25)

        #make fake msa_clust and mask_pos
        msa_clust = msa
        mask_pos = torch.full_like(msa_clust, 1).bool()
        b_seq.append(msa[0].clone())
        b_msa_seed.append(msa_full_onehot.clone()) #masked single sequence onehot (nb no mask so just single sequence onehot)
        b_msa_extra.append(msa_extra_onehot.clone()) #masked single sequence onehot (nb no mask so just single sequence onehot)
        b_msa_clust.append(msa_clust.clone()) #unmasked original single sequence 
        b_mask_pos.append(mask_pos.clone()) #mask positions in single sequence (all zeros)

    b_seq = torch.stack(b_seq)
    b_msa_clust = torch.stack(b_msa_clust)
    b_msa_seed = torch.stack(b_msa_seed)
    b_msa_extra = torch.stack(b_msa_extra)
    b_mask_pos = torch.stack(b_mask_pos)

    return b_seq, b_msa_clust, b_msa_seed, b_msa_extra, b_mask_pos

def mask_inputs(seq, msa_masked, msa_full, xyz_t, t1d, input_seq_mask=None, input_str_mask=None, input_t1dconf_mask=None, loss_seq_mask=None, loss_str_mask=None):
    """
    Parameters:
        seq (torch.tensor, required): (B,I,L) integer sequence 
        msa_masked (torch.tensor, required): (B,I,N_short,L,46)
        msa_full  (torch,.tensor, required): (B,I,N_long,L,23)
        
        xyz_t (torch,tensor): (B,T,L,14,3) template crds BEFORE they go into get_init_xyz 
        
        t1d (torch.tensor, required): (B,I,L,22) this is the t1d before tacking on the chi angles 
        
        str_mask_1D (torch.tensor, required): Shape (L) rank 1 tensor where structure is masked at False positions 
        seq_mask_1D (torch.tensor, required): Shape (L) rank 1 tensor where seq is masked at False positions 
    """

    ###########
    B,_,_ = seq.shape
    assert B == 1, 'batch sizes > 1 not supported'
    seq_mask = input_seq_mask[0]
    seq[:,:,~seq_mask] = 21 # mask token categorical value

    ### msa_masked ###
    ################## 
    msa_masked[:,:,:,~seq_mask,:20] = 0
    msa_masked[:,:,:,~seq_mask,20]  = 0
    msa_masked[:,:,:,~seq_mask,21]  = 1     # set to the unkown char
    
    # index 44/45 is insertion/deletion
    # index 43 is the unknown token
    # index 42 is the masked token 
    msa_masked[:,:,:,~seq_mask,22:42] = 0
    msa_masked[:,:,:,~seq_mask,43] = 1 
    msa_masked[:,:,:,~seq_mask,42] = 0

    # insertion/deletion stuff 
    msa_masked[:,:,:,~seq_mask,44:] = 0

    ### msa_full ### 
    ################
    msa_full[:,:,:,~seq_mask,:20] = 0
    msa_full[:,:,:,~seq_mask,21]  = 1
    msa_full[:,:,:,~seq_mask,20]  = 0 
    msa_full[:,:,:,~seq_mask,-1]  = 0   #NOTE: double check this is insertions/deletions and 0 makes sense 

    ### t1d ###
    ########### 
    # NOTE: Not adjusting t1d last dim (confidence) from sequence mask
    t1d[:,:,~seq_mask,:20] = 0 
    t1d[:,:,~seq_mask,20]  = 1 # unknown

    t1d[:,:,:,21] *= input_t1dconf_mask

    #JG added in here to make sure everything fits
    print('expanding t1d to 24 dims')
    
    t1d = torch.cat((t1d, torch.zeros((t1d.shape[0],t1d.shape[1],t1d.shape[2],2)).float()), -1).to(seq.device)

    xyz_t[:,:,~seq_mask,3:,:] = float('nan')

    # Structure masking
    str_mask = input_str_mask[0]
    xyz_t[:,:,~str_mask,:,:] = float('nan')

    return seq, msa_masked, msa_full, xyz_t, t1d
    

###########################################################
#Functions for randomly translating/rotation input residues
###########################################################

def get_translated_coords(args):
    '''
    Parses args.res_translate
    '''
    #get positions to translate
    res_translate = []
    for res in args.res_translate.split(":"):
        temp_str = []
        for i in res.split(','):
            temp_str.append(i)
        if temp_str[-1][0].isalpha() is True:
            temp_str.append(2.0) #set default distance
        for i in temp_str[:-1]:
            if '-' in i:
                start = int(i.split('-')[0][1:])
                while start <= int(i.split('-')[1]):
                    res_translate.append((i.split('-')[0][0] + str(start),float(temp_str[-1])))
                    start += 1
            else:
                res_translate.append((i, float(temp_str[-1])))
        start = 0
    
    output = []
    for i in res_translate:
        temp = (i[0], i[1], start)
        output.append(temp)
        start += 1

    return output

def get_tied_translated_coords(args, untied_translate=None):
    '''
    Parses args.tie_translate
    '''
    #pdb_idx = list(parsed_pdb['idx'])
    #xyz = parsed_pdb['xyz']
    #get positions to translate
    res_translate = []
    block = 0
    for res in args.tie_translate.split(":"):
        temp_str = []
        for i in res.split(','):
            temp_str.append(i)
        if temp_str[-1][0].isalpha() is True:
            temp_str.append(2.0) #set default distance
        for i in temp_str[:-1]:
            if '-' in i:
                start = int(i.split('-')[0][1:])
                while start <= int(i.split('-')[1]):
                    res_translate.append((i.split('-')[0][0] + str(start),float(temp_str[-1]), block))
                    start += 1
            else:
                res_translate.append((i, float(temp_str[-1]), block))
        block += 1
    
    #sanity check
    if untied_translate != None:
        checker = [i[0] for i in res_translate]
        untied_check = [i[0] for i in untied_translate]
        for i in checker:
            if i in untied_check:
                print(f'WARNING: residue {i} is specified both in --res_translate and --tie_translate. Residue {i} will be ignored in --res_translate, and instead only moved in a tied block (--tie_translate)')
        
        final_output = res_translate
        for i in untied_translate:
            if i[0] not in checker:
                final_output.append((i[0],i[1],i[2] + block + 1))
    else:
        final_output = res_translate
    
    return final_output

 

def translate_coords(parsed_pdb, res_translate):
    '''
    Takes parsed list in format [(chain_residue,distance,tieing_block)] and randomly translates residues accordingly.
    '''

    pdb_idx = parsed_pdb['pdb_idx']
    xyz = np.copy(parsed_pdb['xyz'])
    translated_coord_dict = {}
    #get number of blocks
    temp = [int(i[2]) for i in res_translate]
    blocks = np.max(temp)

    for block in range(blocks + 1):
        init_dist = 1.01
        while init_dist > 1: #gives equal probability to any direction (as keeps going until init_dist is within unit circle)
            x = random.uniform(-1,1)
            y = random.uniform(-1,1)
            z = random.uniform(-1,1)
            init_dist = np.sqrt(x**2 + y**2 + z**2)
        x=x/init_dist
        y=y/init_dist
        z=z/init_dist
        translate_dist = random.uniform(0,1) #now choose distance (as proportion of maximum) that coordinates will be translated
        for res in res_translate:
            if res[2] == block:
                res_idx = pdb_idx.index((res[0][0],int(res[0][1:])))
                original_coords = np.copy(xyz[res_idx,:,:])
                for i in range(14):
                    if parsed_pdb['mask'][res_idx, i]:
                        xyz[res_idx,i,0] += np.float32(x * translate_dist * float(res[1]))
                        xyz[res_idx,i,1] += np.float32(y * translate_dist * float(res[1]))
                        xyz[res_idx,i,2] += np.float32(z * translate_dist * float(res[1]))
                translated_coords = xyz[res_idx,:,:]
                translated_coord_dict[res[0]] = (original_coords.tolist(), translated_coords.tolist())
         
    return xyz[:,:,:], translated_coord_dict

def parse_block_rotate(args):
    block_translate = []
    block = 0
    for res in args.block_rotate.split(":"):
        temp_str = []
        for i in res.split(','):
            temp_str.append(i)
        if temp_str[-1][0].isalpha() is True:
            temp_str.append(10) #set default angle to 10 degrees
        for i in temp_str[:-1]:
            if '-' in i:
                start = int(i.split('-')[0][1:])
                while start <= int(i.split('-')[1]):
                    block_translate.append((i.split('-')[0][0] + str(start),float(temp_str[-1]), block))
                    start += 1
            else:
                block_translate.append((i, float(temp_str[-1]), block))
        block += 1
    return block_translate

def rotate_block(xyz, block_rotate,pdb_index):
    rotated_coord_dict = {}
    #get number of blocks
    temp = [int(i[2]) for i in block_rotate]
    blocks = np.max(temp)
    for block in range(blocks + 1):
        idxs = [pdb_index.index((i[0][0],int(i[0][1:]))) for i in block_rotate if i[2] == block]
        angle = [i[1] for i in block_rotate if i[2] == block][0]
        block_xyz = xyz[idxs,:,:]
        com = [float(torch.mean(block_xyz[:,:,i])) for i in range(3)]
        origin_xyz = np.copy(block_xyz)
        for i in range(np.shape(origin_xyz)[0]):
            for j in range(14):
                origin_xyz[i,j] = origin_xyz[i,j] - com
        rotated_xyz = rigid_rotate(origin_xyz,angle,angle,angle)
        recovered_xyz = np.copy(rotated_xyz)
        for i in range(np.shape(origin_xyz)[0]):
            for j in range(14):
                recovered_xyz[i,j] = rotated_xyz[i,j] + com
        recovered_xyz=torch.tensor(recovered_xyz)
        rotated_coord_dict[f'rotated_block_{block}_original'] = block_xyz
        rotated_coord_dict[f'rotated_block_{block}_rotated'] = recovered_xyz
        xyz_out = torch.clone(xyz)
        for i in range(len(idxs)):
            xyz_out[idxs[i]] = recovered_xyz[i]
    return xyz_out,rotated_coord_dict

def rigid_rotate(xyz,a=180,b=180,c=180):
    #TODO fix this to make it truly uniform
    a=(a/180)*math.pi
    b=(b/180)*math.pi
    c=(c/180)*math.pi
    alpha = random.uniform(-a, a)
    beta = random.uniform(-b, b)
    gamma = random.uniform(-c, c)
    rotated = []
    for i in range(np.shape(xyz)[0]):
        for j in range(14):
            try:
                x = xyz[i,j,0]
                y = xyz[i,j,1]
                z = xyz[i,j,2]
                x2 = x*math.cos(alpha) - y*math.sin(alpha)
                y2 = x*math.sin(alpha) + y*math.cos(alpha)
                x3 = x2*math.cos(beta) - z*math.sin(beta)
                z2 = x2*math.sin(beta) + z*math.cos(beta)
                y3 = y2*math.cos(gamma) - z2*math.sin(gamma)
                z3 = y2*math.sin(gamma) + z2*math.cos(gamma)
                rotated.append([x3,y3,z3])
            except:
                rotated.append([float('nan'),float('nan'),float('nan')])
    rotated=np.array(rotated)
    rotated=np.reshape(rotated, [np.shape(xyz)[0],14,3])
    
    return rotated


######## from old pred_util.py 
def find_contigs(mask):
    """
    Find contiguous regions in a mask that are True with no False in between

    Parameters:
        mask (torch.tensor or np.array, required): 1D boolean array 

    Returns:
        contigs (list): List of tuples, each tuple containing the beginning and the  
    """
    assert len(mask.shape) == 1 # 1D tensor of bools 
    
    contigs = []
    found_contig = False 
    for i,b in enumerate(mask):
        
        
        if b and not found_contig:   # found the beginning of a contig
            contig = [i]
            found_contig = True 
        
        elif b and found_contig:     # currently have contig, continuing it 
            pass 
        
        elif not b and found_contig: # found the end, record previous index as end, reset indicator  
            contig.append(i)
            found_contig = False 
            contigs.append(tuple(contig))
        
        else:                        # currently don't have a contig, and didn't find one 
            pass 
    
    
    # fence post bug - check if the very last entry was True and we didn't get to finish 
    if b:
        contig.append(i+1)
        found_contig = False 
        contigs.append(tuple(contig))
        
    return contigs


def reindex_chains(pdb_idx):
    """
    Given a list of (chain, index) tuples, and the indices where chains break, create a reordered indexing 

    Parameters:
        
        pdb_idx (list, required): List of tuples (chainID, index) 

        breaks (list, required): List of indices where chains begin 
    """

    new_breaks, new_idx = [],[]
    current_chain = None

    chain_and_idx_to_torch = {}

    for i,T in enumerate(pdb_idx):

        chain, idx = T

        if chain != current_chain:
            new_breaks.append(i)
            current_chain = chain 
            
            # create new space for chain id listings 
            chain_and_idx_to_torch[chain] = {}
        
        # map original pdb (chain, idx) pair to index in tensor 
        chain_and_idx_to_torch[chain][idx] = i
        
        # append tensor index to list 
        new_idx.append(i)
    
    new_idx = np.array(new_idx)
    # now we have ordered list and know where the chainbreaks are in the new order 
    num_additions = 0
    for i in new_breaks[1:]: # skip the first trivial one
        new_idx[np.where(new_idx==(i+ num_additions*500))[0][0]:] += 500
        num_additions += 1
    
    return new_idx, chain_and_idx_to_torch,new_breaks[1:]

class ObjectView(object):
    '''
    Easy wrapper to access dictionary values with "dot" notiation instead
    '''
    def __init__(self, d):
        self.__dict__ = d

def split_templates(xyz_t, t1d, multi_templates,mappings,multi_tmpl_conf=None):
    templates = multi_templates.split(":")
    if multi_tmpl_conf is not None:
        multi_tmpl_conf = [float(i) for i in multi_tmpl_conf.split(",")]
        assert len(templates) == len(multi_tmpl_conf), "Number of templates must equal number of confidences specified in --multi_tmpl_conf flag"
    for idx, template in enumerate(templates):
        parts = template.split(",")
        template_mask = torch.zeros(xyz_t.shape[2]).bool()
        for part in parts:
            start = int(part.split("-")[0][1:])
            end = int(part.split("-")[1]) + 1
            chain = part[0]
            for i in range(start, end):
                try:
                    ref_pos = mappings['complex_con_ref_pdb_idx'].index((chain, i))
                    hal_pos_0 = mappings['complex_con_hal_idx0'][ref_pos]
                except:
                    ref_pos = mappings['con_ref_pdb_idx'].index((chain, i))
                    hal_pos_0 = mappings['con_hal_idx0'][ref_pos]
                template_mask[hal_pos_0] = True

        xyz_t_temp = torch.clone(xyz_t)
        xyz_t_temp[:,:,~template_mask,:,:] = float('nan')
        t1d_temp = torch.clone(t1d)
        t1d_temp[:,:,~template_mask,:20] =0
        t1d_temp[:,:,~template_mask,20] = 1
        if multi_tmpl_conf is not None:
            t1d_temp[:,:,template_mask,21] = multi_tmpl_conf[idx]
        if idx != 0:
            xyz_t_out = torch.cat((xyz_t_out, xyz_t_temp),dim=1)
            t1d_out = torch.cat((t1d_out, t1d_temp),dim=1)
        else:
            xyz_t_out = xyz_t_temp
            t1d_out = t1d_temp
    return xyz_t_out, t1d_out


class ContigMap():
    '''
    New class for doing mapping.
    Supports multichain or multiple crops from a single receptor chain.
    Also supports indexing jump (+200) or not, based on contig input.
    Default chain outputs are inpainted chains as A (and B, C etc if multiple chains), and all fragments of receptor chain on the next one (generally B)
    Output chains can be specified. Sequence must be the same number of elements as in contig string
    '''
    def __init__(self, parsed_pdb, contigs=None, inpaint_seq=None, inpaint_str=None, length=None, ref_idx=None, hal_idx=None, idx_rf=None, inpaint_seq_tensor=None, inpaint_str_tensor=None, topo=False):
        #sanity checks
        if contigs is None and ref_idx is None:
            sys.exit("Must either specify a contig string or precise mapping")
        if idx_rf is not None or hal_idx is not None or ref_idx is not None:
            if idx_rf is None or hal_idx is None or ref_idx is None:
                sys.exit("If you're specifying specific contig mappings, the reference and output positions must be specified, AND the indexing for RoseTTAFold (idx_rf)")
        
        self.chain_order='ABCDEFGHIJKLMNOPQRSTUVWXYZ'
        if length is not None:
            if '-' not in length:
                self.length = [int(length),int(length)+1]
            else:
                self.length = [int(length.split("-")[0]),int(length.split("-")[1])+1]
        else:
            self.length = None
        self.ref_idx = ref_idx
        self.hal_idx=hal_idx
        self.idx_rf=idx_rf
        self.inpaint_seq = ','.join(inpaint_seq).split(",") if inpaint_seq is not None else None
        self.inpaint_str = ','.join(inpaint_str).split(",") if inpaint_str is not None else None
        self.inpaint_seq_tensor=inpaint_seq_tensor
        self.inpaint_str_tensor=inpaint_str_tensor
        self.parsed_pdb = parsed_pdb
        self.topo=topo
        if ref_idx is None:
            #using default contig generation, which outputs in rosetta-like format
            self.contigs=contigs
            self.sampled_mask,self.contig_length,self.n_inpaint_chains = self.get_sampled_mask()
            self.receptor_chain = self.chain_order[self.n_inpaint_chains]
            self.receptor, self.receptor_hal, self.receptor_rf, self.inpaint, self.inpaint_hal, self.inpaint_rf= self.expand_sampled_mask()
            self.ref = self.inpaint + self.receptor
            self.hal = self.inpaint_hal + self.receptor_hal
            self.rf = self.inpaint_rf + self.receptor_rf   
        else:
            #specifying precise mappings
            self.ref=ref_idx
            self.hal=hal_idx
            self.rf = rf_idx
        self.mask_1d = [False if i == ('_','_') else True for i in self.ref]
        
        #take care of sequence and structure masking
        if self.inpaint_seq_tensor is None:
            if self.inpaint_seq is not None:
                self.inpaint_seq = self.get_inpaint_seq_str(self.inpaint_seq)
            else:
                self.inpaint_seq = np.array([True if i != ('_','_') else False for i in self.ref])
        else:
            self.inpaint_seq = self.inpaint_seq_tensor

        if self.inpaint_str_tensor is None:
            if self.inpaint_str is not None:
                self.inpaint_str = self.get_inpaint_seq_str(self.inpaint_str)
            else:
                self.inpaint_str = np.array([True if i != ('_','_') else False for i in self.ref])
        else:
            self.inpaint_str = self.inpaint_str_tensor        
        #get 0-indexed input/output (for trb file)
        self.ref_idx0,self.hal_idx0, self.ref_idx0_inpaint, self.hal_idx0_inpaint, self.ref_idx0_receptor, self.hal_idx0_receptor=self.get_idx0()
    
    def get_sampled_mask(self):
        '''
        Function to get a sampled mask from a contig.
        '''
        length_compatible=False
        count = 0
        while length_compatible is False:
            inpaint_chains=0
            contig_list = self.contigs
            sampled_mask = []
            sampled_mask_length = 0
            #allow receptor chain to be last in contig string
            if all([i[0].isalpha() for i in contig_list[-1].split(",")]):
                contig_list[-1] = f'{contig_list[-1]},0'
            for con in contig_list:
                if ((all([i[0].isalpha() for i in con.split(",")[:-1]]) and con.split(",")[-1] == '0')) or self.topo is True:    
                    #receptor chain
                    sampled_mask.append(con)
                else:
                    inpaint_chains += 1
                    #chain to be inpainted. These are the only chains that count towards the length of the contig
                    subcons = con.split(",")
                    subcon_out = []
                    for subcon in subcons:
                        if subcon[0].isalpha():
                            subcon_out.append(subcon)
                            if '-' in subcon:
                                sampled_mask_length += (int(subcon.split("-")[1])-int(subcon.split("-")[0][1:])+1)
                            else:
                                sampled_mask_length += 1

                        else:
                            if '-' in subcon:
                                length_inpaint=random.randint(int(subcon.split("-")[0]),int(subcon.split("-")[1]))
                                subcon_out.append(f'{length_inpaint}-{length_inpaint}')
                                sampled_mask_length += length_inpaint
                            elif subcon == '0':
                                subcon_out.append('0')
                            else:
                                length_inpaint=int(subcon)
                                subcon_out.append(f'{length_inpaint}-{length_inpaint}')
                                sampled_mask_length += int(subcon)
                    sampled_mask.append(','.join(subcon_out))
            #check length is compatible 
            if self.length is not None:
                if sampled_mask_length >= self.length[0] and sampled_mask_length < self.length[1]:
                    length_compatible = True
            else:
                length_compatible = True
            count+=1
            if count == 100000: #contig string incompatible with this length
                sys.exit("Contig string incompatible with --length range")
        return sampled_mask, sampled_mask_length, inpaint_chains

    def expand_sampled_mask(self):
        chain_order='ABCDEFGHIJKLMNOPQRSTUVWXYZ'
        receptor = []
        inpaint = []
        receptor_hal = []
        inpaint_hal = []
        receptor_idx = 1
        inpaint_idx = 1
        inpaint_chain_idx=-1
        receptor_chain_break=[]
        inpaint_chain_break = []
        for con in self.sampled_mask:
            if (all([i[0].isalpha() for i in con.split(",")[:-1]]) and con.split(",")[-1] == '0') or self.topo is True:
                #receptor chain
                subcons = con.split(",")[:-1]
                assert all([i[0] == subcons[0][0] for i in subcons]), "If specifying fragmented receptor in a single block of the contig string, they MUST derive from the same chain"
                assert all(int(subcons[i].split("-")[0][1:]) < int(subcons[i+1].split("-")[0][1:]) for i in range(len(subcons)-1)), "If specifying multiple fragments from the same chain, pdb indices must be in ascending order!"
                for idx, subcon in enumerate(subcons):
                    ref_to_add = [(subcon[0], i) for i in np.arange(int(subcon.split("-")[0][1:]),int(subcon.split("-")[1])+1)]
                    receptor.extend(ref_to_add)
                    receptor_hal.extend([(self.receptor_chain,i) for i in np.arange(receptor_idx, receptor_idx+len(ref_to_add))])
                    receptor_idx += len(ref_to_add)
                    if idx != len(subcons)-1:
                        idx_jump = int(subcons[idx+1].split("-")[0][1:]) - int(subcon.split("-")[1]) -1 
                        receptor_chain_break.append((receptor_idx-1,idx_jump)) #actual chain break in pdb chain
                    else:
                        receptor_chain_break.append((receptor_idx-1,200)) #200 aa chain break 
            else:
                inpaint_chain_idx += 1
                for subcon in con.split(","):
                    if subcon[0].isalpha():
                        ref_to_add=[(subcon[0], i) for i in np.arange(int(subcon.split("-")[0][1:]),int(subcon.split("-")[1])+1)]
                        inpaint.extend(ref_to_add)
                        inpaint_hal.extend([(chain_order[inpaint_chain_idx], i) for i in np.arange(inpaint_idx,inpaint_idx+len(ref_to_add))])
                        inpaint_idx += len(ref_to_add)
                    
                    else:
                        inpaint.extend([('_','_')] * int(subcon.split("-")[0]))
                        inpaint_hal.extend([(chain_order[inpaint_chain_idx], i) for i in np.arange(inpaint_idx,inpaint_idx+int(subcon.split("-")[0]))])
                        inpaint_idx += int(subcon.split("-")[0])
                inpaint_chain_break.append((inpaint_idx-1,200))
    
        if self.topo is True or inpaint_hal == []:
            receptor_hal = [(i[0], i[1]) for i in receptor_hal]
        else:        
            receptor_hal = [(i[0], i[1] + inpaint_hal[-1][1]) for i in receptor_hal] #rosetta-like numbering
        #get rf indexes, with chain breaks
        inpaint_rf = np.arange(0,len(inpaint))
        receptor_rf = np.arange(len(inpaint)+200,len(inpaint)+len(receptor)+200)
        for ch_break in inpaint_chain_break[:-1]:
            receptor_rf[:] += 200
            inpaint_rf[ch_break[0]:] += ch_break[1]
        for ch_break in receptor_chain_break[:-1]:
            receptor_rf[ch_break[0]:] += ch_break[1]
    
        return receptor, receptor_hal, receptor_rf.tolist(), inpaint, inpaint_hal, inpaint_rf.tolist()

    def get_inpaint_seq_str(self, inpaint_s):
        '''
        function to generate inpaint_str or inpaint_seq masks specific to this contig
        '''
        s_mask = np.copy(self.mask_1d)
        inpaint_s_list = []
        for i in inpaint_s:
            if '-' in i:
                inpaint_s_list.extend([(i[0],p) for p in range(int(i.split("-")[0][1:]), int(i.split("-")[1])+1)])
            else:
                inpaint_s_list.append((i[0],int(i[1:])))
        for res in inpaint_s_list:
            if res in self.ref:
                s_mask[self.ref.index(res)] = False #mask this residue
    
        return np.array(s_mask) 

    def get_idx0(self):
        ref_idx0=[]
        hal_idx0=[]
        ref_idx0_inpaint=[]
        hal_idx0_inpaint=[]
        ref_idx0_receptor=[]
        hal_idx0_receptor=[]
        for idx, val in enumerate(self.ref):
            if val != ('_','_'):
                assert val in self.parsed_pdb['pdb_idx'],f"{val} is not in pdb file!"
                hal_idx0.append(idx)
                ref_idx0.append(self.parsed_pdb['pdb_idx'].index(val))
        for idx, val in enumerate(self.inpaint):
            if val != ('_','_'):
                hal_idx0_inpaint.append(idx)
                ref_idx0_inpaint.append(self.parsed_pdb['pdb_idx'].index(val))
        for idx, val in enumerate(self.receptor):
            if val != ('_','_'):
                hal_idx0_receptor.append(idx)
                ref_idx0_receptor.append(self.parsed_pdb['pdb_idx'].index(val))


        return ref_idx0, hal_idx0, ref_idx0_inpaint, hal_idx0_inpaint, ref_idx0_receptor, hal_idx0_receptor

def get_mappings(rm):
    mappings = {}
    mappings['con_ref_pdb_idx'] = [i for i in rm.inpaint if i != ('_','_')]
    mappings['con_hal_pdb_idx'] = [rm.inpaint_hal[i] for i in range(len(rm.inpaint_hal)) if rm.inpaint[i] != ("_","_")]
    mappings['con_ref_idx0'] = rm.ref_idx0_inpaint
    mappings['con_hal_idx0'] = rm.hal_idx0_inpaint
    if rm.inpaint != rm.ref:
        mappings['complex_con_ref_pdb_idx'] = [i for i in rm.ref if i != ("_","_")]
        mappings['complex_con_hal_pdb_idx'] = [rm.hal[i] for i in range(len(rm.hal)) if rm.ref[i] != ("_","_")]
        mappings['receptor_con_ref_pdb_idx'] = [i for i in rm.receptor if i != ("_","_")]
        mappings['receptor_con_hal_pdb_idx'] = [rm.receptor_hal[i] for i in range(len(rm.receptor_hal)) if rm.receptor[i] != ("_","_")]
        mappings['complex_con_ref_idx0'] = rm.ref_idx0
        mappings['complex_con_hal_idx0'] = rm.hal_idx0
        mappings['receptor_con_ref_idx0'] = rm.ref_idx0_receptor
        mappings['receptor_con_hal_idx0'] = rm.hal_idx0_receptor
    mappings['inpaint_str'] = rm.inpaint_str
    mappings['inpaint_seq'] = rm.inpaint_seq
    mappings['sampled_mask'] = rm.sampled_mask
    mappings['mask_1d'] = rm.mask_1d
    return mappings

def lddt_unbin(pred_lddt):
    nbin = pred_lddt.shape[1]
    bin_step = 1.0 / nbin
    lddt_bins = torch.linspace(bin_step, 1.0, nbin, dtype=pred_lddt.dtype, device=pred_lddt.device)

    pred_lddt = nn.Softmax(dim=1)(pred_lddt)
    return torch.sum(lddt_bins[None,:,None]*pred_lddt, dim=1)