File size: 9,921 Bytes
fa128ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85a9a0c
fa128ec
 
 
 
 
 
 
85a9a0c
 
fa128ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import os
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
from functools import partial

from clize import run
import numpy as np
from skimage.io import imsave

from viz import grid_of_images_default

import torch.nn as nn
import torch

from model import DenseAE
from model import ConvAE
from model import DeepConvAE
from model import SimpleConvAE
from model import ZAE
from model import KAE
from data import load_dataset

device = "cuda" if torch.cuda.is_available() else "cpu"


def plot_dataset(code_2d, categories):
    colors = [
        'r',
        'b',
        'g',
        'crimson',
        'gold',
        'yellow',
        'maroon',
        'm',
        'c',
        'orange'
    ]
    for cat in range(0, 10):
        g = (categories == cat)
        plt.scatter(
            code_2d[g, 0], 
            code_2d[g, 1],
            marker='+', 
            c=colors[cat], 
            s=40, 
            alpha=0.7,
            label="digit {}".format(cat)
        )


def plot_generated(code_2d, categories):
    g = (categories < 0)
    plt.scatter(
        code_2d[g, 0], 
        code_2d[g, 1], 
        marker='+',
        c='gray', 
        s=30
    )


def grid_embedding(h):
    from lapjv import lapjv
    from scipy.spatial.distance import cdist
    assert int(np.sqrt(h.shape[0])) ** 2 == h.shape[0], 'Nb of examples must be a square number'
    size = int(np.sqrt(h.shape[0]))
    grid = np.dstack(np.meshgrid(np.linspace(0, 1, size), np.linspace(0, 1, size))).reshape(-1, 2)
    cost_matrix = cdist(grid, h, "sqeuclidean").astype('float32')
    cost_matrix = cost_matrix * (100000 / cost_matrix.max())
    _, rows, cols = lapjv(cost_matrix)
    return rows


def save_weights(m, folder='.'):
    if isinstance(m, nn.Linear):
        w = m.weight.data
        if w.size(1) == 28*28 or w.size(0) == 28*28:
            w0, w1 = w.size(0), w.size(1)
            if w0 == 28*28:
                w = w.transpose(0, 1)
                w = w.contiguous()
            w = w.view(w.size(0), 1, 28, 28)
            gr = grid_of_images_default(np.array(w.tolist()), normalize=True)
            imsave('{}/feat_{}.png'.format(folder, w0), gr)
    elif isinstance(m, nn.ConvTranspose2d):
        w = m.weight.data
        if w.size(0) in (32, 64, 128, 256, 512) and w.size(1) in (1, 3):
            gr = grid_of_images_default(np.array(w.tolist()), normalize=True)
            imsave('{}/feat.png'.format(folder), gr)

@torch.no_grad()
def iterative_refinement(ae, nb_examples=1, nb_iter=10, w=28, h=28, c=1, batch_size=None, binarize_threshold=None):
    if batch_size is None:
        batch_size = nb_examples
    x = torch.rand(nb_iter, nb_examples, c, w, h)
    for i in range(1, nb_iter):
        for j in range(0, nb_examples, batch_size):
            oldv = x[i-1][j:j + batch_size].to(device)
            newv = ae(oldv)
            if binarize_threshold is not None:
                newv = (newv>binarize_threshold).float()
            newv = newv.data.cpu()
            x[i][j:j + batch_size] = newv
    return x


def build_model(name, w, h, c):
    if name == 'convae':
        ae = ConvAE(
            w=w, h=h, c=c, 
            nb_filters=128, 
            spatial=True, 
            channel=True, 
            channel_stride=4,
        )
    elif name == 'zae':
        ae = ZAE(
            w=w, h=h, c=c,
            theta=3,
            nb_hidden=1000,
        )
    elif name == 'kae':
        ae = KAE(
            w=w, h=h, c=c,
            nb_active=1000,
            nb_hidden=1000,
        )
    elif name == 'denseae':
        ae = DenseAE(
            w=w, h=h, c=c,
            encode_hidden=[1000],
            decode_hidden=[],
            ksparse=True,
            nb_active=50,
        )
    elif name == 'simple_convae':
        ae = SimpleConvAE(
            w=w, h=h, c=c,
            nb_filters=128,
        )
    elif name == 'deep_convae':
        ae = DeepConvAE(
            w=w, h=h, c=c, 
            nb_filters=128, 
            spatial=True, 
            channel=True, 
            channel_stride=4,
            nb_layers=3, 
        )
    else:
        raise ValueError('Unknown model')

    return ae


def salt_and_pepper(X, proba=0.5):
    a = (torch.rand(X.size()).to(device) <= (1 - proba)).float()
    b = (torch.rand(X.size()).to(device) <= 0.5).float()
    c = ((a == 0).float() * b)
    return X * a + c


def train(*, dataset='mnist', folder='mnist', resume=False, model='convae', walkback=False, denoise=False, epochs=100, batch_size=64, log_interval=100):
    gamma = 0.99
    dataset = load_dataset(dataset, split='train')
    x0, _ = dataset[0]
    c, h, w = x0.size()
    dataloader = torch.utils.data.DataLoader(
        dataset, 
        batch_size=batch_size,
        shuffle=True, 
        num_workers=4
    )
    if resume:
        ae = torch.load('{}/model.th'.format(folder))
        ae = ae.to(device)
    else:
        ae = build_model(model, w=w, h=h, c=c)
        ae = ae.to(device)
    optim = torch.optim.Adadelta(ae.parameters(), lr=0.1, eps=1e-7, rho=0.95, weight_decay=0)
    avg_loss = 0.
    nb_updates = 0
    _save_weights = partial(save_weights, folder=folder)

    for epoch in range(epochs):
        for X, y in dataloader:
            ae.zero_grad()
            X = X.to(device)
            if hasattr(ae, 'nb_active'):
                ae.nb_active = max(ae.nb_active - 1, 32)
            # walkback + denoise
            if walkback:
                loss = 0.
                x = X.data
                nb = 5
                for _ in range(nb):
                    x = salt_and_pepper(x, proba=0.3) # denoise
                    x = x.to(device)
                    x = ae(x) # reconstruct
                    Xr = x
                    loss += (((x - X) ** 2).view(X.size(0), -1).sum(1).mean()) / nb
                    x = (torch.rand(x.size()).to(device) <= x.data).float() # sample
            # denoise only
            elif denoise:
                Xc = salt_and_pepper(X.data, proba=0.3)
                Xr = ae(Xc)
                loss = ((Xr - X) ** 2).view(X.size(0), -1).sum(1).mean()
            # normal training
            else:
                Xr = ae(X)
                loss = ((Xr - X) ** 2).view(X.size(0), -1).sum(1).mean()
            loss.backward()
            optim.step()
            avg_loss = avg_loss * gamma + loss.item() * (1 - gamma)
            if nb_updates % log_interval == 0:
                print('Epoch : {:05d} AvgTrainLoss: {:.6f}, Batch Loss : {:.6f}'.format(epoch, avg_loss, loss.item()  ))
                gr = grid_of_images_default(np.array(Xr.data.tolist()))
                imsave('{}/rec.png'.format(folder), gr)
                ae.apply(_save_weights)
                torch.save(ae, '{}/model.th'.format(folder))
            nb_updates += 1


def test(*, dataset='mnist', folder='out', model_path=None, nb_iter=100, nb_generate=100, tsne=False):
    if not os.path.exists(folder):
        os.makedirs(folder, exist_ok=True)
    dataset = load_dataset(dataset, split='train')
    x0, _ = dataset[0]
    c, h, w = x0.size()
    nb = nb_generate
    print('Load model...')
    if model_path is None:
        model_path = os.path.join(folder, "model.th")
    ae = torch.load(model_path, map_location="cpu")
    ae = ae.to(device)
    def enc(X):
        batch_size = 64
        h_list = []
        for i in range(0, X.size(0), batch_size):
            x = X[i:i + batch_size]
            x = x.to(device)
            name = ae.__class__.__name__
            if name in ('ConvAE',):
                h = ae.encode(x)
                h, _ = h.max(2)
                h = h.view((h.size(0), -1))
            elif name in ('DenseAE',):
                x = x.view(x.size(0), -1)
                h = x
                #h = ae.encode(x)
            else:
                h = x.view(x.size(0), -1)
            h = h.data.cpu()
            h_list.append(h)
        return torch.cat(h_list, 0)

    print('iterative refinement...')
    g = iterative_refinement(
        ae, 
        nb_iter=nb_iter, 
        nb_examples=nb, 
        w=w, h=h, c=c, 
        batch_size=64
    )
    np.savez('{}/generated.npz'.format(folder), X=g.numpy())
    g_subset = g[:, 0:100]
    gr = grid_of_images_default(g_subset.reshape((g_subset.shape[0]*g_subset.shape[1], h, w, 1)).numpy(), shape=(g_subset.shape[0], g_subset.shape[1])) 
    imsave('{}/gen_full_iters.png'.format(folder), gr)

    g = g[-1] # last iter
    print(g.shape)
    gr = grid_of_images_default(g.numpy())
    imsave('{}/gen_full.png'.format(folder), gr)

    if tsne:
        from sklearn.manifold import TSNE
        dataloader = torch.utils.data.DataLoader(
            dataset, 
            batch_size=nb,
            shuffle=True, 
            num_workers=1
        )
        print('Load data...')
        X, y = next(iter(dataloader))
        print('Encode data...')
        xh = enc(X)
        print('Encode generated...')
        gh = enc(g)
        X = X.numpy()
        g = g.numpy()
        xh = xh.numpy()
        gh = gh.numpy()

        a = np.concatenate((X, g), axis=0)
        ah = np.concatenate((xh, gh), axis=0)
        labels = np.array(y.tolist() + [-1] * len(g))
        sne = TSNE()
        print('fit tsne...')
        ah = sne.fit_transform(ah)
        print('grid embedding...')
        
        asmall = np.concatenate((a[0:450], a[nb:nb + 450]), axis=0)
        ahsmall = np.concatenate((ah[0:450], ah[nb:nb + 450]), axis=0)
        rows = grid_embedding(ahsmall)
        asmall = asmall[rows]
        gr = grid_of_images_default(asmall)
        imsave('{}/sne_grid.png'.format(folder), gr)

        fig = plt.figure(figsize=(10, 10))
        plot_dataset(ah, labels)
        plot_generated(ah, labels)
        plt.legend(loc='best')
        plt.axis('off')
        plt.savefig('{}/sne.png'.format(folder))
        plt.close(fig)



if __name__ == '__main__':
    run([train, test])