File size: 9,921 Bytes
fa128ec 85a9a0c fa128ec 85a9a0c fa128ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
import os
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
from functools import partial
from clize import run
import numpy as np
from skimage.io import imsave
from viz import grid_of_images_default
import torch.nn as nn
import torch
from model import DenseAE
from model import ConvAE
from model import DeepConvAE
from model import SimpleConvAE
from model import ZAE
from model import KAE
from data import load_dataset
device = "cuda" if torch.cuda.is_available() else "cpu"
def plot_dataset(code_2d, categories):
colors = [
'r',
'b',
'g',
'crimson',
'gold',
'yellow',
'maroon',
'm',
'c',
'orange'
]
for cat in range(0, 10):
g = (categories == cat)
plt.scatter(
code_2d[g, 0],
code_2d[g, 1],
marker='+',
c=colors[cat],
s=40,
alpha=0.7,
label="digit {}".format(cat)
)
def plot_generated(code_2d, categories):
g = (categories < 0)
plt.scatter(
code_2d[g, 0],
code_2d[g, 1],
marker='+',
c='gray',
s=30
)
def grid_embedding(h):
from lapjv import lapjv
from scipy.spatial.distance import cdist
assert int(np.sqrt(h.shape[0])) ** 2 == h.shape[0], 'Nb of examples must be a square number'
size = int(np.sqrt(h.shape[0]))
grid = np.dstack(np.meshgrid(np.linspace(0, 1, size), np.linspace(0, 1, size))).reshape(-1, 2)
cost_matrix = cdist(grid, h, "sqeuclidean").astype('float32')
cost_matrix = cost_matrix * (100000 / cost_matrix.max())
_, rows, cols = lapjv(cost_matrix)
return rows
def save_weights(m, folder='.'):
if isinstance(m, nn.Linear):
w = m.weight.data
if w.size(1) == 28*28 or w.size(0) == 28*28:
w0, w1 = w.size(0), w.size(1)
if w0 == 28*28:
w = w.transpose(0, 1)
w = w.contiguous()
w = w.view(w.size(0), 1, 28, 28)
gr = grid_of_images_default(np.array(w.tolist()), normalize=True)
imsave('{}/feat_{}.png'.format(folder, w0), gr)
elif isinstance(m, nn.ConvTranspose2d):
w = m.weight.data
if w.size(0) in (32, 64, 128, 256, 512) and w.size(1) in (1, 3):
gr = grid_of_images_default(np.array(w.tolist()), normalize=True)
imsave('{}/feat.png'.format(folder), gr)
@torch.no_grad()
def iterative_refinement(ae, nb_examples=1, nb_iter=10, w=28, h=28, c=1, batch_size=None, binarize_threshold=None):
if batch_size is None:
batch_size = nb_examples
x = torch.rand(nb_iter, nb_examples, c, w, h)
for i in range(1, nb_iter):
for j in range(0, nb_examples, batch_size):
oldv = x[i-1][j:j + batch_size].to(device)
newv = ae(oldv)
if binarize_threshold is not None:
newv = (newv>binarize_threshold).float()
newv = newv.data.cpu()
x[i][j:j + batch_size] = newv
return x
def build_model(name, w, h, c):
if name == 'convae':
ae = ConvAE(
w=w, h=h, c=c,
nb_filters=128,
spatial=True,
channel=True,
channel_stride=4,
)
elif name == 'zae':
ae = ZAE(
w=w, h=h, c=c,
theta=3,
nb_hidden=1000,
)
elif name == 'kae':
ae = KAE(
w=w, h=h, c=c,
nb_active=1000,
nb_hidden=1000,
)
elif name == 'denseae':
ae = DenseAE(
w=w, h=h, c=c,
encode_hidden=[1000],
decode_hidden=[],
ksparse=True,
nb_active=50,
)
elif name == 'simple_convae':
ae = SimpleConvAE(
w=w, h=h, c=c,
nb_filters=128,
)
elif name == 'deep_convae':
ae = DeepConvAE(
w=w, h=h, c=c,
nb_filters=128,
spatial=True,
channel=True,
channel_stride=4,
nb_layers=3,
)
else:
raise ValueError('Unknown model')
return ae
def salt_and_pepper(X, proba=0.5):
a = (torch.rand(X.size()).to(device) <= (1 - proba)).float()
b = (torch.rand(X.size()).to(device) <= 0.5).float()
c = ((a == 0).float() * b)
return X * a + c
def train(*, dataset='mnist', folder='mnist', resume=False, model='convae', walkback=False, denoise=False, epochs=100, batch_size=64, log_interval=100):
gamma = 0.99
dataset = load_dataset(dataset, split='train')
x0, _ = dataset[0]
c, h, w = x0.size()
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
shuffle=True,
num_workers=4
)
if resume:
ae = torch.load('{}/model.th'.format(folder))
ae = ae.to(device)
else:
ae = build_model(model, w=w, h=h, c=c)
ae = ae.to(device)
optim = torch.optim.Adadelta(ae.parameters(), lr=0.1, eps=1e-7, rho=0.95, weight_decay=0)
avg_loss = 0.
nb_updates = 0
_save_weights = partial(save_weights, folder=folder)
for epoch in range(epochs):
for X, y in dataloader:
ae.zero_grad()
X = X.to(device)
if hasattr(ae, 'nb_active'):
ae.nb_active = max(ae.nb_active - 1, 32)
# walkback + denoise
if walkback:
loss = 0.
x = X.data
nb = 5
for _ in range(nb):
x = salt_and_pepper(x, proba=0.3) # denoise
x = x.to(device)
x = ae(x) # reconstruct
Xr = x
loss += (((x - X) ** 2).view(X.size(0), -1).sum(1).mean()) / nb
x = (torch.rand(x.size()).to(device) <= x.data).float() # sample
# denoise only
elif denoise:
Xc = salt_and_pepper(X.data, proba=0.3)
Xr = ae(Xc)
loss = ((Xr - X) ** 2).view(X.size(0), -1).sum(1).mean()
# normal training
else:
Xr = ae(X)
loss = ((Xr - X) ** 2).view(X.size(0), -1).sum(1).mean()
loss.backward()
optim.step()
avg_loss = avg_loss * gamma + loss.item() * (1 - gamma)
if nb_updates % log_interval == 0:
print('Epoch : {:05d} AvgTrainLoss: {:.6f}, Batch Loss : {:.6f}'.format(epoch, avg_loss, loss.item() ))
gr = grid_of_images_default(np.array(Xr.data.tolist()))
imsave('{}/rec.png'.format(folder), gr)
ae.apply(_save_weights)
torch.save(ae, '{}/model.th'.format(folder))
nb_updates += 1
def test(*, dataset='mnist', folder='out', model_path=None, nb_iter=100, nb_generate=100, tsne=False):
if not os.path.exists(folder):
os.makedirs(folder, exist_ok=True)
dataset = load_dataset(dataset, split='train')
x0, _ = dataset[0]
c, h, w = x0.size()
nb = nb_generate
print('Load model...')
if model_path is None:
model_path = os.path.join(folder, "model.th")
ae = torch.load(model_path, map_location="cpu")
ae = ae.to(device)
def enc(X):
batch_size = 64
h_list = []
for i in range(0, X.size(0), batch_size):
x = X[i:i + batch_size]
x = x.to(device)
name = ae.__class__.__name__
if name in ('ConvAE',):
h = ae.encode(x)
h, _ = h.max(2)
h = h.view((h.size(0), -1))
elif name in ('DenseAE',):
x = x.view(x.size(0), -1)
h = x
#h = ae.encode(x)
else:
h = x.view(x.size(0), -1)
h = h.data.cpu()
h_list.append(h)
return torch.cat(h_list, 0)
print('iterative refinement...')
g = iterative_refinement(
ae,
nb_iter=nb_iter,
nb_examples=nb,
w=w, h=h, c=c,
batch_size=64
)
np.savez('{}/generated.npz'.format(folder), X=g.numpy())
g_subset = g[:, 0:100]
gr = grid_of_images_default(g_subset.reshape((g_subset.shape[0]*g_subset.shape[1], h, w, 1)).numpy(), shape=(g_subset.shape[0], g_subset.shape[1]))
imsave('{}/gen_full_iters.png'.format(folder), gr)
g = g[-1] # last iter
print(g.shape)
gr = grid_of_images_default(g.numpy())
imsave('{}/gen_full.png'.format(folder), gr)
if tsne:
from sklearn.manifold import TSNE
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=nb,
shuffle=True,
num_workers=1
)
print('Load data...')
X, y = next(iter(dataloader))
print('Encode data...')
xh = enc(X)
print('Encode generated...')
gh = enc(g)
X = X.numpy()
g = g.numpy()
xh = xh.numpy()
gh = gh.numpy()
a = np.concatenate((X, g), axis=0)
ah = np.concatenate((xh, gh), axis=0)
labels = np.array(y.tolist() + [-1] * len(g))
sne = TSNE()
print('fit tsne...')
ah = sne.fit_transform(ah)
print('grid embedding...')
asmall = np.concatenate((a[0:450], a[nb:nb + 450]), axis=0)
ahsmall = np.concatenate((ah[0:450], ah[nb:nb + 450]), axis=0)
rows = grid_embedding(ahsmall)
asmall = asmall[rows]
gr = grid_of_images_default(asmall)
imsave('{}/sne_grid.png'.format(folder), gr)
fig = plt.figure(figsize=(10, 10))
plot_dataset(ah, labels)
plot_generated(ah, labels)
plt.legend(loc='best')
plt.axis('off')
plt.savefig('{}/sne.png'.format(folder))
plt.close(fig)
if __name__ == '__main__':
run([train, test])
|