File size: 2,562 Bytes
ddfc4d0 fa128ec ddfc4d0 fa128ec 85a9a0c fa128ec ddfc4d0 fb002e6 ddfc4d0 fa128ec 85a9a0c fa128ec 957ae0d ddfc4d0 fa128ec d58b310 957ae0d d58b310 ddfc4d0 d58b310 fa128ec d58b310 85a9a0c d58b310 fa128ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import math
import torch
import torchvision
import gradio as gr
from PIL import Image
from cli import iterative_refinement
from viz import grid_of_images_default
models = {
"ConvAE": torch.load("convae.th", map_location="cpu"),
"Deep ConvAE": torch.load("deep_convae.th", map_location="cpu"),
"Dense K-Sparse": torch.load("fc_sparse.th", map_location="cpu"),
}
def gen(md, model_name, seed, nb_iter, nb_samples, width, height, nb_active, only_last, black_bg, binarize, binarize_threshold):
torch.manual_seed(int(seed))
bs = 64
model = models[model_name]
if model_name == "Dense K-Sparse":
model.nb_active = nb_active
samples = iterative_refinement(
model,
nb_iter=int(nb_iter),
nb_examples=int(nb_samples),
w=int(width), h=int(height), c=1,
batch_size=bs,
binarize_threshold=binarize_threshold if binarize else None,
)
if not black_bg:
samples = 1 - samples
if only_last:
s = int(math.sqrt((nb_samples)))
grid = grid_of_images_default(samples[-1].numpy(), shape=(s, s))
else:
grid = grid_of_images_default(samples.reshape((samples.shape[0]*samples.shape[1], int(height), int(width), 1)).numpy(), shape=(samples.shape[0], samples.shape[1]))
grid = (grid*255).astype("uint8")
return Image.fromarray(grid)
text = """
This interface supports generation of samples from:
- ConvAE model (from [`Digits that are not: Generating new types through deep neural nets`](https://arxiv.org/pdf/1606.04345.pdf))
- DeepConvAE model (from [here](https://tel.archives-ouvertes.fr/tel-01838272/file/75406_CHERTI_2018_diffusion.pdf), Section 10.1 with `L=3`)
- Dense K-Sparse model (from [`Out-of-class novelty generation`](https://openreview.net/forum?id=r1QXQkSYg))
These models were trained on MNIST only (digits), but were found to generate new kinds of symbols, see the references for more details.
NB: `nb_active` is only used for the Dense K-Sparse, specifying nb of activations to keep in the last layer.
"""
iface = gr.Interface(
fn=gen,
inputs=[
gr.Markdown(text),
gr.Dropdown(list(models.keys()), value="Deep ConvAE"), gr.Number(value=0), gr.Number(value=25), gr.Number(value=1), gr.Number(value=28), gr.Number(value=28),gr.Slider(minimum=0,maximum=800, value=800, step=1), gr.Checkbox(value=False, label="Only show last iteration"), gr.Checkbox(value=True, label="Black background"), gr.Checkbox(value=False, label="binarize"), gr.Number(value=0.5)
],
outputs="image"
)
iface.launch()
|