Spaces:
Sleeping
Sleeping
File size: 6,201 Bytes
eb79941 0adf9a6 eb79941 0adf9a6 eb79941 0adf9a6 eb79941 0adf9a6 eb79941 0adf9a6 eb79941 0adf9a6 eb79941 7e8c7d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import os
from dash import Dash, dcc, html, Input, Output, State
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain_community.llms import HuggingFaceHub
import pandas as pd
# Set API token for HuggingFace
os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.getenv('HUGGINGFACEHUB_API_TOKEN', "")
# Initialize Dash app
app = Dash(__name__)
# Extract text from PDF files
def get_pdf_text(pdf_file):
try:
pdf_reader = PdfReader(pdf_file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text() or ""
return text
except Exception as e:
raise ValueError(f"Error processing PDF file: {e}")
# Split text into smaller chunks
def get_text_chunks(text):
text_splitter = CharacterTextSplitter(
separator="\n", chunk_size=1000, chunk_overlap=100, length_function=len
)
return text_splitter.split_text(text)
# Create a vector store from text chunks
def get_vectorstore(text_chunks):
if not text_chunks:
raise ValueError("No text chunks provided for vectorstore creation.")
model = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
embeddings = HuggingFaceBgeEmbeddings(
model_name=model, encode_kwargs={"normalize_embeddings": True}, model_kwargs={"device": "cpu"}
)
return FAISS.from_texts(texts=text_chunks, embedding=embeddings)
# Create a conversational retrieval chain
def get_conversation_chain(vectorstore):
if not vectorstore:
raise ValueError("Vectorstore is not initialized.")
llm = HuggingFaceHub(
repo_id="google/gemma-7b",
model_kwargs={"temperature": 0.1, "max_length": 2048},
)
return llm, vectorstore.as_retriever()
# Process CSV data
def process_csv_data(csv_file):
try:
df = pd.read_csv(csv_file)
combined_text = df.astype(str).apply(" ".join, axis=1).str.cat(sep=" ")
return combined_text
except Exception as e:
raise ValueError(f"Error processing CSV file: {e}")
# Layout
app.layout = html.Div([
html.H1("Chat Bot برای فایلهای PDF و CSV 📚"),
dcc.Upload(
id='upload-pdf',
children=html.Div(['Drag and Drop or ', html.A('Select PDF Files')]),
style={
'width': '100%', 'height': '60px', 'lineHeight': '60px',
'borderWidth': '1px', 'borderStyle': 'dashed', 'borderRadius': '5px',
'textAlign': 'center', 'margin': '10px'
},
multiple=True
),
dcc.Upload(
id='upload-csv',
children=html.Div(['Drag and Drop or ', html.A('Select CSV Files')]),
style={
'width': '100%', 'height': '60px', 'lineHeight': '60px',
'borderWidth': '1px', 'borderStyle': 'dashed', 'borderRadius': '5px',
'textAlign': 'center', 'margin': '10px'
},
),
html.Button('پردازش', id='process-button', n_clicks=0),
dcc.Input(id='question-input', type='text', placeholder='سوال خود را وارد کنید'),
html.Button('پاسخ', id='answer-button', n_clicks=0),
html.Div(id='output-answer')
])
# Callbacks
@app.callback(
Output('output-answer', 'children'),
[Input('answer-button', 'n_clicks')],
[State('question-input', 'value'), State('process-button', 'n_clicks')]
)
def handle_question(n_clicks_answer, question, n_clicks_process):
if n_clicks_answer > 0 and n_clicks_process > 0:
llm, retriever = app.server.config.get('conversation_chain', (None, None))
if not llm or not retriever:
return "لطفاً ابتدا فایلها را پردازش کنید."
try:
result = retriever.get_relevant_documents(question)
answer = llm.generate({"question": question, "context": result})
return html.Div([
html.P(f"سوال: {question}"),
html.P(f"پاسخ: {answer}")
])
except Exception as e:
return f"خطا در پردازش سوال: {str(e)}"
return "لطفاً ابتدا فایلها را پردازش کنید."
@app.callback(
Output('output-answer', 'children'),
[Input('process-button', 'n_clicks')],
[State('upload-pdf', 'contents'), State('upload-csv', 'contents')]
)
def process_files(n_clicks, pdf_contents, csv_contents):
if n_clicks > 0:
combined_text = ""
if pdf_contents:
if not isinstance(pdf_contents, list) or not all(isinstance(content, str) for content in pdf_contents):
return "فرمت فایل PDF صحیح نیست. لطفاً دوباره تلاش کنید."
for content in pdf_contents:
try:
pdf_data = content.split(",")[1]
pdf_text = get_pdf_text(pdf_data)
combined_text += pdf_text
except Exception as e:
return f"خطا در پردازش فایل PDF: {str(e)}"
if csv_contents:
for content in csv_contents:
try:
csv_data = content.split(",")[1]
csv_text = process_csv_data(csv_data)
combined_text += csv_text
except Exception as e:
return f"خطا در پردازش فایل CSV: {str(e)}"
if not combined_text.strip():
return "هیچ متنی برای پردازش یافت نشد."
try:
text_chunks = get_text_chunks(combined_text)
vectorstore = get_vectorstore(text_chunks)
conversation_chain = get_conversation_chain(vectorstore)
app.server.config['conversation_chain'] = conversation_chain
return "پردازش تکمیل شد! اکنون میتوانید سوالات خود را بپرسید."
except ValueError as e:
return f"خطا در پردازش دادهها: {str(e)}"
return "لطفاً فایلهای مناسب را آپلود کنید."
if __name__ == '__main__':
from waitress import serve
serve(app.server, host="0.0.0.0", port=7860)
|