algo_returns / app.py
tttarun's picture
Update app.py
d14403d verified
raw
history blame
8.32 kB
import gradio as gr
import pandas as pd
import numpy as np
from NSEDownload import stocks
from time import sleep
import os
from gradio_rangeslider import RangeSlider
## Get 10 year data from NSE
def get_data(symb):
symb = symb.upper()
if os.path.exists(f'{symb}.csv'):
return
l = []
year = 2010
for i in range(0,10,5):
year = i + year
df = stocks.get_data(stock_symbol=symb, start_date=f'1-1-{year}', end_date=f'1-1-{year+5}')
df.reset_index(drop=False,inplace=True)
# print(df.head())
l.append(df)
sleep(15)
dff = pd.concat(l,ignore_index=True)
dff.to_csv(f'{symb}.csv',index=False,encoding='utf-8')
return
# Calculate profit/loss based on stock price movement after condition is met
def calculate_profit_loss(stock_data,days_to_monitor):
buy_sell_actions = []
for i in range(len(stock_data)):
if stock_data['condition'].iloc[i] == 1: # Trigger condition met
buy_price = stock_data['Open Price'].iloc[i+1] # Buy on the next day's open price
monitored_prices = stock_data.iloc[i+1:i+days_to_monitor] # Monitor the next 8 days
sell_price = None
for j in range(len(monitored_prices)):
no_trigger = 0
open_price = monitored_prices['Open Price'].iloc[j]
close_price = monitored_prices['Close Price'].iloc[j]
change_percent = (close_price - buy_price) / buy_price * 100
# Check for the +2%, +3%, +5%, +8% thresholds and set stop loss
if change_percent >= 8:
sell_price = close_price
break
elif change_percent >= 5:
sell_price = max(sell_price or 0, close_price)
if change_percent <= 5:
break
elif change_percent >= 3:
sell_price = max(sell_price or 0, close_price)
if change_percent <= 3:
break
elif change_percent >= 2:
sell_price = max(sell_price or 0, close_price)
if change_percent <= 2:
break
# Stop-loss at -3%
elif change_percent <= -3:
sell_price = close_price
break
# If no triggers happen, sell at the 8th day's closing price
if sell_price is None:
sell_price = monitored_prices['Close Price'].iloc[-1]
no_trigger = 1
# Calculate profit/loss percentage
profit_loss_percent = (sell_price - buy_price) / buy_price * 100
buy_sell_actions.append({
'Buy Date': stock_data['Date'].iloc[i+1],
'Sell Date': monitored_prices['Date'].iloc[j] if sell_price != monitored_prices['Close Price'].iloc[-1] else monitored_prices['Date'].iloc[-1],
'Buy Price': buy_price,
'Sell Price': sell_price,
'Profit/Loss (%)': profit_loss_percent,
'No trigger': no_trigger
})
return pd.DataFrame(buy_sell_actions)
# Example function to simulate loading and processing stock data
def get_stock_data(stock_name,rsi_window,days_to_monitor,previous_n_days,rsi_threshold1,rsi_threshold2):
stock_name = stock_name.upper()
get_data(stock_name)
stock_data = pd.read_csv(f'{stock_name}.csv')
# Ensure the 'Date' column is in datetime format
stock_data['Date'] = pd.to_datetime(stock_data['Date'])
# Sort data by date
stock_data = stock_data.sort_values(by='Date')
# Calculate daily RSI
def calculate_rsi(data, window):
delta = data['Close Price'].diff(1)
# print(delta)
gain = np.where(delta > 0, delta, 0)
loss = np.where(delta < 0, -delta, 0)
avg_gain = pd.Series(gain).rolling(window=window).mean()
avg_loss = pd.Series(loss).rolling(window=window).mean()
rs = avg_gain / avg_loss
rsi = 100 - (100 / (1 + rs))
return rsi
# Add a new column 'Daily RSI' for 14-day RSI
stock_data['Daily RSI'] = calculate_rsi(stock_data, window=rsi_window)
# Function to calculate sliding weekly RSI
def calculate_sliding_weekly_rsi(data):
global weekly_rsi
weekly_rsi = []
for i in range(7):
stock_data1 = stock_data.iloc[i::7].reset_index(drop=True)
stock_data1['weekly RSI'] = calculate_rsi(stock_data1, window=rsi_window)
weekly_rsi.append(stock_data1)
stock_data2 = pd.concat(weekly_rsi,ignore_index=True)
stock_data.drop_duplicates(subset=['Date'],keep='first',inplace=True)
stock_data2 = stock_data2.sort_values(by='Date')
return stock_data2
# Calculate sliding weekly RSI
stock_data = calculate_sliding_weekly_rsi(stock_data)
stock_data.reset_index(drop=True,inplace=True)
## Applying the condition
for i in range(previous_n_days, len(stock_data)):
prev_n_days_rsi = stock_data['Daily RSI'][i-previous_n_days:i]
if all(prev_n_days_rsi < rsi_threshold1) and rsi_threshold2[0] <= stock_data['Daily RSI'].iloc[i] <= rsi_threshold2[1]:
stock_data.at[i, 'condition'] = 1
fstock = stock_data[stock_data['condition']==1].reset_index(drop=True)
profit_data = calculate_profit_loss(stock_data,days_to_monitor)
# Returning two dataframes: One for the full stock data, another for RSI values
return fstock, profit_data
# Function to save CSV file and return its path
def save_to_csv(stock_input,rsi_window_slider,days_to_monitor,previous_n_days,rsi_threshold1,rsi_threshold2):
stock_name = stock_name.upper()
fstock, profit_data = get_stock_data(stock_name,rsi_window,days_to_monitor,previous_n_days,rsi_threshold1,rsi_threshold2)
csv_file_path = f'{stock_name}.csv'
# fstock['Date'] = pd.to_datetime(fstock['Date']).dt.date
# profit_data['Date'] = pd.to_datetime(profit_data['Date']).dt.date
return fstock, profit_data, csv_file_path
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown(
"""
<h1 style="text-align: center; color: #4CAF50;">Stock Analysis Interface</h1>
<p style="text-align: center;">Enter a stock Symbol and Calculate the algo returns.</p>
"""
)
with gr.Row():
with gr.Column():
stock_input = gr.Textbox(label="Enter Stock Symbol", placeholder="e.g., CANBK", lines=1)
rsi_window_slider = gr.Slider(minimum=1, maximum=30, value=14, label="RSI Window (Days)", step=1)
days_to_monitor = gr.Slider(minimum=1, maximum=30, value=8, label="Days to monitor stock once condition is met", step=1)
previous_n_days = gr.Slider(minimum=1, maximum=180, value=30, label="Previous n days RSI threshold to check", step=1)
rsi_threshold1 = gr.Slider(minimum=1, maximum=100, value=65, label="Previous RSI threshold", step=1)
rsi_threshold2 = RangeSlider(label="Current RSI Range", minimum=0, maximum=100, value=[65, 70])
text1 = "## The range is: {min} to {max}"
range_ = gr.Markdown(value=text1.format(min=0, max=100))
rsi_threshold2.change(lambda s: text.format(min=s[0], max=s[1]), range_slider, range_,
show_progress="hide", trigger_mode="always_last")
submit_button = gr.Button("Submit", variant="primary")
with gr.Column():
gr.Markdown("<h3 style='text-align: center;'>Output</h3>")
output_stock_data = gr.DataFrame(label="Dates where Conditions met", interactive=False)
output_rsi_data = gr.DataFrame(label="Profit and Loss Statement", interactive=False)
csv_download = gr.File(label="Download the full CSV")
# When the button is clicked, show the two dataframes and provide a downloadable CSV
submit_button.click(save_to_csv, inputs=[stock_input,rsi_window_slider,days_to_monitor,previous_n_days,rsi_threshold1,rsi_threshold2], outputs=[output_stock_data, output_rsi_data, csv_download])
# Launch the Gradio interface
demo.launch()