sponsorblock-ml-fork / src /evaluate.py
Joshua Lochner
Allow seeding for evaluations
63f1925
raw
history blame
8.17 kB
from datasets import load_dataset
from transformers import (
AutoModelForSeq2SeqLM,
AutoTokenizer,
HfArgumentParser
)
from preprocess import DatasetArguments, ProcessedArguments, get_words
from model import get_classifier_vectorizer
from shared import device, GeneralArguments
from predict import ClassifierArguments, predict, add_predictions, TrainingOutputArguments
from segment import word_start, word_end, SegmentationArguments, add_labels_to_words
import pandas as pd
from dataclasses import dataclass, field
from typing import Optional
from tqdm import tqdm
import json
import os
import random
@dataclass
class EvaluationArguments(TrainingOutputArguments):
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
max_videos: Optional[int] = field(
default=None,
metadata={
'help': 'The number of videos to test on'
}
)
data_dir: Optional[str] = DatasetArguments.__dataclass_fields__['data_dir']
dataset: Optional[str] = DatasetArguments.__dataclass_fields__[
'validation_file']
output_file: Optional[str] = field(
default='metrics.csv',
metadata={
'help': 'Save metrics to output file'
}
)
def jaccard(x1, x2, y1, y2):
# Calculate jaccard index
intersection = max(0, min(x2, y2)-max(x1, y1))
filled_union = max(x2, y2) - min(x1, y1)
return intersection/filled_union
def attach_predictions_to_sponsor_segments(predictions, sponsor_segments):
"""Attach sponsor segments to closest prediction"""
for prediction in predictions:
prediction['best_overlap'] = 0
prediction['best_sponsorship'] = None
# Assign predictions to actual (labelled) sponsored segments
for sponsor_segment in sponsor_segments:
sponsor_segment['best_overlap'] = 0
sponsor_segment['best_prediction'] = None
for prediction in predictions:
j = jaccard(prediction['start'], prediction['end'],
sponsor_segment['start'], sponsor_segment['end'])
if sponsor_segment['best_overlap'] < j:
sponsor_segment['best_overlap'] = j
sponsor_segment['best_prediction'] = prediction
if prediction['best_overlap'] < j:
prediction['best_overlap'] = j
prediction['best_sponsorship'] = sponsor_segment
return sponsor_segments
def calculate_metrics(labelled_words, predictions):
metrics = {
'true_positive': 0, # Is sponsor, predicted sponsor
# Is sponsor, predicted not sponsor (i.e., missed it - bad)
'false_negative': 0,
# Is not sponsor, predicted sponsor (classified incorectly, not that bad since we do manual checking afterwards)
'false_positive': 0,
'true_negative': 0, # Is not sponsor, predicted not sponsor
}
metrics['video_duration'] = word_end(
labelled_words[-1])-word_start(labelled_words[0])
for index, word in enumerate(labelled_words):
if index >= len(labelled_words) - 1:
continue
# TODO make sure words with manual transcripts
duration = labelled_words[index+1]['start'] - word['start']
predicted_sponsor = False
for p in predictions:
# Is in some prediction
if p['start'] <= word['start'] <= p['end']:
predicted_sponsor = True
break
if predicted_sponsor:
# total_positive_time += duration
if word['category'] is not None: # Is actual sponsor
metrics['true_positive'] += duration
else:
metrics['false_positive'] += duration
else:
# total_negative_time += duration
if word['category'] is not None: # Is actual sponsor
metrics['false_negative'] += duration
else:
metrics['true_negative'] += duration
# NOTE In cases where we encounter division by 0, we say that the value is 1
# https://stats.stackexchange.com/a/1775
# (Precision) TP+FP=0: means that all instances were predicted as negative
# (Recall) TP+FN=0: means that there were no positive cases in the input data
# The fraction of predictions our model got right
# Can simplify, but use full formula
z = metrics['true_positive'] + metrics['true_negative'] + \
metrics['false_positive'] + metrics['false_negative']
metrics['accuracy'] = (
(metrics['true_positive'] + metrics['true_negative']) / z) if z > 0 else 1
# What proportion of positive identifications was actually correct?
z = metrics['true_positive'] + metrics['false_positive']
metrics['precision'] = (metrics['true_positive'] / z) if z > 0 else 1
# What proportion of actual positives was identified correctly?
z = metrics['true_positive'] + metrics['false_negative']
metrics['recall'] = (metrics['true_positive'] / z) if z > 0 else 1
# https://deepai.org/machine-learning-glossary-and-terms/f-score
s = metrics['precision'] + metrics['recall']
metrics['f-score'] = (2 * (metrics['precision'] *
metrics['recall']) / s) if s > 0 else 0
return metrics
def main():
hf_parser = HfArgumentParser((
EvaluationArguments,
ProcessedArguments,
SegmentationArguments,
ClassifierArguments,
GeneralArguments
))
evaluation_args, processed_args, segmentation_args, classifier_args, _ = hf_parser.parse_args_into_dataclasses()
model = AutoModelForSeq2SeqLM.from_pretrained(evaluation_args.model_path)
model.to(device())
tokenizer = AutoTokenizer.from_pretrained(evaluation_args.model_path)
dataset = load_dataset('json', data_files=os.path.join(
evaluation_args.data_dir, evaluation_args.dataset))['train']
video_ids = [row['video_id'] for row in dataset]
random.shuffle(video_ids) # TODO Make param
if evaluation_args.max_videos is not None:
video_ids = video_ids[:evaluation_args.max_videos]
# Load labelled data:
final_path = os.path.join(
processed_args.processed_dir, processed_args.processed_file)
with open(final_path) as fp:
final_data = json.load(fp)
total_accuracy = 0
total_precision = 0
total_recall = 0
total_fscore = 0
count = 0
out_metrics = []
try:
with tqdm(video_ids) as progress:
for video_id in progress:
progress.set_description(f'Processing {video_id}')
sponsor_segments = final_data.get(video_id, [])
words = get_words(video_id)
if not words:
continue
count += 1
# Make predictions
predictions = predict(video_id, model, tokenizer,
segmentation_args, words, classifier_args)
labelled_words = add_labels_to_words(words, sponsor_segments)
met = calculate_metrics(labelled_words, predictions)
met['video_id'] = video_id
out_metrics.append(met)
total_accuracy += met['accuracy']
total_precision += met['precision']
total_recall += met['recall']
total_fscore += met['f-score']
progress.set_postfix({
'accuracy': total_accuracy/count,
'precision': total_precision/count,
'recall': total_recall/count,
'f-score': total_fscore/count
})
labelled_predicted_segments = attach_predictions_to_sponsor_segments(
predictions, sponsor_segments)
for seg in labelled_predicted_segments:
if seg['best_prediction'] is None:
print('\nNo match found for', seg)
except KeyboardInterrupt:
pass
df = pd.DataFrame(out_metrics)
df.to_csv(evaluation_args.output_file)
print(df.mean())
if __name__ == '__main__':
main()