Spaces:
Runtime error
Runtime error
Delete app
Browse files- app/database_build.py +0 -552
- app/main.py +0 -90
- app/metadata.pickle +0 -3
- app/predict_se.py +0 -264
app/database_build.py
DELETED
@@ -1,552 +0,0 @@
|
|
1 |
-
from sentence_transformers import SentenceTransformer, util
|
2 |
-
import json
|
3 |
-
import time
|
4 |
-
import pandas as pd
|
5 |
-
import numpy as np
|
6 |
-
import pickle
|
7 |
-
|
8 |
-
import chromadb
|
9 |
-
from chromadb.config import Settings
|
10 |
-
from chromadb.utils import embedding_functions
|
11 |
-
from chromadb.db.clickhouse import NoDatapointsException
|
12 |
-
|
13 |
-
|
14 |
-
def prepare_cd(conceptDescriptions):
|
15 |
-
df_cd = pd.DataFrame(
|
16 |
-
columns=["SemanticId", "Definition", "PreferredName", "Datatype", "Unit"]
|
17 |
-
)
|
18 |
-
# In den leeren DF werden alle Concept Descriptions eingelesen
|
19 |
-
for cd in conceptDescriptions:
|
20 |
-
semantic_id = cd["identification"]["id"]
|
21 |
-
data_spec = cd["embeddedDataSpecifications"][0]["dataSpecificationContent"]
|
22 |
-
preferred_name = data_spec["preferredName"]
|
23 |
-
short_name = data_spec["shortName"]
|
24 |
-
if len(preferred_name) > 1:
|
25 |
-
for name_variant in preferred_name:
|
26 |
-
if (
|
27 |
-
name_variant["language"] == "EN"
|
28 |
-
or name_variant["language"] == "en"
|
29 |
-
or name_variant["language"] == "EN?"
|
30 |
-
):
|
31 |
-
name = name_variant["text"]
|
32 |
-
elif len(preferred_name) == 1:
|
33 |
-
name = preferred_name[0]["text"]
|
34 |
-
elif len(preferred_name) == 0:
|
35 |
-
short_name = data_spec["shortName"]
|
36 |
-
if len(short_name) == 0:
|
37 |
-
name = "NaN"
|
38 |
-
else:
|
39 |
-
name = short_name[0]["text"]
|
40 |
-
|
41 |
-
definition = data_spec["definition"]
|
42 |
-
if len(definition) > 1:
|
43 |
-
for definition_variant in definition:
|
44 |
-
if (
|
45 |
-
definition_variant["language"] == "EN"
|
46 |
-
or definition_variant["language"] == "en"
|
47 |
-
or definition_variant["language"] == "EN?"
|
48 |
-
):
|
49 |
-
chosen_def = definition_variant["text"]
|
50 |
-
elif len(definition) == 1:
|
51 |
-
chosen_def = definition[0]["text"]
|
52 |
-
elif len(definition) == 0:
|
53 |
-
chosen_def = "NaN"
|
54 |
-
|
55 |
-
if data_spec["dataType"] == "":
|
56 |
-
datatype = "NaN"
|
57 |
-
else:
|
58 |
-
datatype = data_spec["dataType"]
|
59 |
-
|
60 |
-
if data_spec["unit"] == "":
|
61 |
-
unit = "NaN"
|
62 |
-
else:
|
63 |
-
unit = data_spec["unit"]
|
64 |
-
|
65 |
-
new_entry = pd.DataFrame(
|
66 |
-
{
|
67 |
-
"SemanticId": semantic_id,
|
68 |
-
"Definition": chosen_def,
|
69 |
-
"PreferredName": name,
|
70 |
-
"Datatype": datatype,
|
71 |
-
"Unit": unit,
|
72 |
-
},
|
73 |
-
index=[0],
|
74 |
-
)
|
75 |
-
df_cd = pd.concat([df_cd, new_entry], ignore_index=True)
|
76 |
-
return df_cd
|
77 |
-
|
78 |
-
|
79 |
-
def get_values(submodel_element):
|
80 |
-
# Auslesen der Submodel Element Werte
|
81 |
-
se_type = submodel_element["modelType"]["name"]
|
82 |
-
se_semantic_id = submodel_element["semanticId"]["keys"][0]["value"]
|
83 |
-
se_semantic_id_local = submodel_element["semanticId"]["keys"][0]["local"]
|
84 |
-
se_id_short = submodel_element["idShort"]
|
85 |
-
value = []
|
86 |
-
se_value = submodel_element["value"]
|
87 |
-
value.append(se_value)
|
88 |
-
|
89 |
-
return se_type, se_semantic_id, se_semantic_id_local, se_id_short, value
|
90 |
-
|
91 |
-
|
92 |
-
def get_concept_description(semantic_id, df_cd):
|
93 |
-
cd_content = df_cd.loc[df_cd["SemanticId"] == semantic_id]
|
94 |
-
|
95 |
-
if cd_content.empty:
|
96 |
-
cd_content = pd.DataFrame(
|
97 |
-
{
|
98 |
-
"SemanticId": semantic_id,
|
99 |
-
"Definition": "NaN",
|
100 |
-
"PreferredName": "NaN",
|
101 |
-
"Datatype": "NaN",
|
102 |
-
"Unit": "NaN",
|
103 |
-
},
|
104 |
-
index=[0],
|
105 |
-
)
|
106 |
-
|
107 |
-
cd_content = cd_content.iloc[0]
|
108 |
-
|
109 |
-
return cd_content
|
110 |
-
|
111 |
-
|
112 |
-
def get_values_sec(
|
113 |
-
df_cd,
|
114 |
-
content,
|
115 |
-
df,
|
116 |
-
aas_id,
|
117 |
-
aas_name,
|
118 |
-
submodel_id,
|
119 |
-
submodel_name,
|
120 |
-
submodel_semantic_id,
|
121 |
-
):
|
122 |
-
collection_values = content[0]["value"]
|
123 |
-
for element in collection_values:
|
124 |
-
content = []
|
125 |
-
content.append(element)
|
126 |
-
|
127 |
-
se_type, se_semantic_id, se_semantic_id_local, se_id_short, value = get_values(
|
128 |
-
element
|
129 |
-
)
|
130 |
-
if se_type == "SubmodelElementCollection":
|
131 |
-
if se_semantic_id_local == True:
|
132 |
-
cd_content = get_concept_description(se_semantic_id, df_cd)
|
133 |
-
definition = cd_content["Definition"]
|
134 |
-
preferred_name = cd_content["PreferredName"]
|
135 |
-
datatype = cd_content["Datatype"]
|
136 |
-
unit = cd_content["Unit"]
|
137 |
-
|
138 |
-
else:
|
139 |
-
definition = "NaN"
|
140 |
-
preferred_name = "NaN"
|
141 |
-
datatype = "NaN"
|
142 |
-
unit = "NaN"
|
143 |
-
|
144 |
-
new_row = pd.DataFrame(
|
145 |
-
{
|
146 |
-
"AASId": aas_id,
|
147 |
-
"AASIdShort": aas_name,
|
148 |
-
"SubmodelId": submodel_id,
|
149 |
-
"SubmodelName": submodel_name,
|
150 |
-
"SubmodelSemanticId": submodel_semantic_id,
|
151 |
-
"SEContent": content,
|
152 |
-
"SESemanticId": se_semantic_id,
|
153 |
-
"SEModelType": se_type,
|
154 |
-
"SEIdShort": se_id_short,
|
155 |
-
"SEValue": value,
|
156 |
-
"Definition": definition,
|
157 |
-
"PreferredName": preferred_name,
|
158 |
-
"Datatype": datatype,
|
159 |
-
"Unit": unit,
|
160 |
-
}
|
161 |
-
)
|
162 |
-
df = pd.concat([df, new_row], ignore_index=True)
|
163 |
-
|
164 |
-
content = []
|
165 |
-
content.append(element)
|
166 |
-
# Rekursive Funktion -> so oft durchlaufen bis unterste Ebene der Collections erreicht ist, so werden verschachteltet SECs bis zum Ende ausgelesen
|
167 |
-
df = get_values_sec(
|
168 |
-
df_cd,
|
169 |
-
content,
|
170 |
-
df,
|
171 |
-
aas_id,
|
172 |
-
aas_name,
|
173 |
-
submodel_id,
|
174 |
-
submodel_name,
|
175 |
-
submodel_semantic_id,
|
176 |
-
)
|
177 |
-
|
178 |
-
else:
|
179 |
-
if se_semantic_id_local == True:
|
180 |
-
cd_content = get_concept_description(se_semantic_id, df_cd)
|
181 |
-
definition = cd_content["Definition"]
|
182 |
-
preferred_name = cd_content["PreferredName"]
|
183 |
-
datatype = cd_content["Datatype"]
|
184 |
-
unit = cd_content["Unit"]
|
185 |
-
|
186 |
-
else:
|
187 |
-
definition = "NaN"
|
188 |
-
preferred_name = "NaN"
|
189 |
-
datatype = "NaN"
|
190 |
-
unit = "NaN"
|
191 |
-
|
192 |
-
new_row = pd.DataFrame(
|
193 |
-
{
|
194 |
-
"AASId": aas_id,
|
195 |
-
"AASIdShort": aas_name,
|
196 |
-
"SubmodelId": submodel_id,
|
197 |
-
"SubmodelName": submodel_name,
|
198 |
-
"SubmodelSemanticId": submodel_semantic_id,
|
199 |
-
"SEContent": content,
|
200 |
-
"SESemanticId": se_semantic_id,
|
201 |
-
"SEModelType": se_type,
|
202 |
-
"SEIdShort": se_id_short,
|
203 |
-
"SEValue": value,
|
204 |
-
"Definition": definition,
|
205 |
-
"PreferredName": preferred_name,
|
206 |
-
"Datatype": datatype,
|
207 |
-
"Unit": unit,
|
208 |
-
}
|
209 |
-
)
|
210 |
-
df = pd.concat([df, new_row], ignore_index=True)
|
211 |
-
|
212 |
-
return df
|
213 |
-
|
214 |
-
|
215 |
-
def set_up_metadata(metalabel, df):
|
216 |
-
datatype_mapping = {
|
217 |
-
"boolean": "BOOLEAN",
|
218 |
-
"string": "STRING",
|
219 |
-
"string_translatable": "STRING",
|
220 |
-
"translatable_string": "STRING",
|
221 |
-
"non_translatable_string": "STRING",
|
222 |
-
"date": "DATE",
|
223 |
-
"data_time": "DATE",
|
224 |
-
"uri": "URI",
|
225 |
-
"int": "INT",
|
226 |
-
"int_measure": "INT",
|
227 |
-
"int_currency": "INT",
|
228 |
-
"integer": "INT",
|
229 |
-
"real": "REAL",
|
230 |
-
"real_measure": "REAL",
|
231 |
-
"real_currency": "REAL",
|
232 |
-
"enum_code": "ENUM_CODE",
|
233 |
-
"enum_int": "ENUM_CODE",
|
234 |
-
"ENUM_REAL": "ENUM_CODE",
|
235 |
-
"ENUM_RATIONAL": "ENUM_CODE",
|
236 |
-
"ENUM_BOOLEAN": "ENUM_CODE",
|
237 |
-
"ENUM_STRING": "ENUM_CODE",
|
238 |
-
"enum_reference": "ENUM_CODE",
|
239 |
-
"enum_instance": "ENUM_CODE",
|
240 |
-
"set(b1,b2)": "SET",
|
241 |
-
"constrained_set(b1,b2,cmn,cmx)": "SET",
|
242 |
-
"set [0,?]": "SET",
|
243 |
-
"set [1,?]": "SET",
|
244 |
-
"set [1, ?]": "SET",
|
245 |
-
"nan": "NaN",
|
246 |
-
"media_type": "LARGE_OBJECT_TYPE",
|
247 |
-
}
|
248 |
-
|
249 |
-
unit_mapping = {
|
250 |
-
"nan": "NaN",
|
251 |
-
"hertz": "FREQUENCY",
|
252 |
-
"hz": "FREQUENCY",
|
253 |
-
"pa": "PRESSURE",
|
254 |
-
"pascal": "PRESSURE",
|
255 |
-
"n/m²": "PRESSURE",
|
256 |
-
"bar": "PRESSURE",
|
257 |
-
"%": "SCALARS_PERC",
|
258 |
-
"w": "POWER",
|
259 |
-
"watt": "POWER",
|
260 |
-
"kw": "POWER",
|
261 |
-
"kg/m³": "CHEMISTRY",
|
262 |
-
"m²/s": "CHEMISTRY",
|
263 |
-
"pa*s": "CHEMISTRY",
|
264 |
-
"v": "ELECTRICAL",
|
265 |
-
"volt": "ELECTRICAL",
|
266 |
-
"db": "ACOUSTICS",
|
267 |
-
"db(a)": "ACOUSTICS",
|
268 |
-
"k": "TEMPERATURE",
|
269 |
-
"°c": "TEMPERATURE",
|
270 |
-
"n": "MECHANICS",
|
271 |
-
"newton": "MECHANICS",
|
272 |
-
"kg/s": "FLOW",
|
273 |
-
"kg/h": "FLOW",
|
274 |
-
"m³/s": "FLOW",
|
275 |
-
"m³/h": "FLOW",
|
276 |
-
"l/s": "FLOW",
|
277 |
-
"l/h": "FLOW",
|
278 |
-
"µm": "LENGTH",
|
279 |
-
"mm": "LENGTH",
|
280 |
-
"cm": "LENGTH",
|
281 |
-
"dm": "LENGTH",
|
282 |
-
"m": "LENGTH",
|
283 |
-
"meter": "LENGTH",
|
284 |
-
"m/s": "SPEED",
|
285 |
-
"km/h": "SPEED",
|
286 |
-
"s^(-1)": "FREQUENCY",
|
287 |
-
"1/s": "FREQUENCY",
|
288 |
-
"s": "TIME",
|
289 |
-
"h": "TIME",
|
290 |
-
"min": "TIME",
|
291 |
-
"d": "TIME",
|
292 |
-
"hours": "TIME",
|
293 |
-
"a": "ELECTRICAL",
|
294 |
-
"m³": "VOLUME",
|
295 |
-
"m²": "AREA",
|
296 |
-
"rpm": "FLOW",
|
297 |
-
"nm": "MECHANICS",
|
298 |
-
"m/m": "MECHANICS",
|
299 |
-
"m³/m²s": "MECHANICS",
|
300 |
-
"w(m²*K)": "HEAT_TRANSFER",
|
301 |
-
"kwh": "ELECTRICAL",
|
302 |
-
"kg/(s*m²)": "FLOW",
|
303 |
-
"kg": "MASS",
|
304 |
-
"w/(m*k)": "HEAT_TRANSFER",
|
305 |
-
"m²*k/w": "HEAT_TRANSFER",
|
306 |
-
"j/s": "POWER",
|
307 |
-
}
|
308 |
-
|
309 |
-
dataset = df
|
310 |
-
dataset["unit_lowercase"] = dataset["Unit"]
|
311 |
-
dataset["unit_lowercase"] = dataset["unit_lowercase"].str.lower()
|
312 |
-
dataset["unit_categ"] = dataset["unit_lowercase"].map(unit_mapping)
|
313 |
-
|
314 |
-
dataset["datatype_lowercase"] = dataset["Datatype"]
|
315 |
-
dataset["datatype_lowercase"] = dataset["datatype_lowercase"].str.lower()
|
316 |
-
dataset["datatype_categ"] = dataset["datatype_lowercase"].map(datatype_mapping)
|
317 |
-
|
318 |
-
dataset = dataset.fillna("NaN")
|
319 |
-
dataset["index"] = dataset.index
|
320 |
-
|
321 |
-
# uni_datatype=dataset['datatype_categ'].unique()
|
322 |
-
# uni_unit=dataset['unit_categ'].unique()
|
323 |
-
unique_labels_set = set()
|
324 |
-
|
325 |
-
dataset["Metalabel"] = ""
|
326 |
-
for i in range(0, len(dataset["Metalabel"])):
|
327 |
-
concat = (str(dataset["unit_categ"][i]), str(dataset["datatype_categ"][i]))
|
328 |
-
keys = [k for k, v in metalabel.items() if v == concat]
|
329 |
-
dataset["Metalabel"][i] = keys[0]
|
330 |
-
unique_labels_set.add(keys[0])
|
331 |
-
unique_label = list(unique_labels_set)
|
332 |
-
print(unique_label)
|
333 |
-
|
334 |
-
return dataset
|
335 |
-
|
336 |
-
|
337 |
-
def encode(aas_df, model):
|
338 |
-
# Einsatz von Sentence Bert um Embeddings zu kreieren
|
339 |
-
aas_df["PreferredName"] = "Name: " + aas_df["PreferredName"].astype(str)
|
340 |
-
aas_df["Definition"] = "Description: " + aas_df["Definition"].astype(str) + "; "
|
341 |
-
corpus_names = aas_df.loc[:, "PreferredName"]
|
342 |
-
corpus_definitions = aas_df.loc[:, "Definition"]
|
343 |
-
embeddings_definitions = model.encode(corpus_definitions, show_progress_bar=True)
|
344 |
-
embeddings_names = model.encode(corpus_names, show_progress_bar=True)
|
345 |
-
concat_name_def_emb = np.concatenate(
|
346 |
-
(embeddings_definitions, embeddings_names), axis=1
|
347 |
-
)
|
348 |
-
# aas_df['EmbeddingDefinition'] = embeddings_definitions.tolist()
|
349 |
-
# aas_df['EmbeddingName'] = embeddings_names.tolist()
|
350 |
-
aas_df["EmbeddingNameDefinition"] = concat_name_def_emb.tolist()
|
351 |
-
return aas_df
|
352 |
-
|
353 |
-
|
354 |
-
def convert_to_list(aas_df):
|
355 |
-
# Für die Datenbank werden teilweise Listen gebraucht
|
356 |
-
aas_index = aas_df.index.tolist()
|
357 |
-
aas_index_str = [str(r) for r in aas_index]
|
358 |
-
se_content = aas_df["SEContent"].tolist()
|
359 |
-
se_embedding_name_definition = aas_df["EmbeddingNameDefinition"].tolist()
|
360 |
-
|
361 |
-
aas_df_dropped = aas_df.drop(
|
362 |
-
["EmbeddingNameDefinition", "SEContent", "SEValue"], axis=1
|
363 |
-
)
|
364 |
-
|
365 |
-
metadata = aas_df_dropped.to_dict("records")
|
366 |
-
|
367 |
-
return metadata, aas_index_str, se_content, se_embedding_name_definition
|
368 |
-
|
369 |
-
|
370 |
-
def set_up_chroma(
|
371 |
-
metadata, aas_index_str, se_content, se_embedding_name_definition, aas_name, client
|
372 |
-
):
|
373 |
-
aas_name = aas_name.lower()
|
374 |
-
# Kein Großbuchstaben in Datenbank erlaubt
|
375 |
-
print(aas_name)
|
376 |
-
# client = chromadb.Client(Settings(
|
377 |
-
# chroma_db_impl="duckdb+parquet",
|
378 |
-
# persist_directory="./drive/My Drive/Colab/NLP/SemantischeInteroperabilität/Deployment" # Optional, defaults to .chromadb/ in the current directory
|
379 |
-
# ))
|
380 |
-
emb_fn = embedding_functions.SentenceTransformerEmbeddingFunction(
|
381 |
-
model_name="gart-labor/eng-distilBERT-se-eclass"
|
382 |
-
)
|
383 |
-
collection = client.get_or_create_collection(
|
384 |
-
name=aas_name, embedding_function=emb_fn
|
385 |
-
)
|
386 |
-
|
387 |
-
aas_content_string = []
|
388 |
-
# Umwandeln in Json damit es in db geschrieben werden kann
|
389 |
-
for element in se_content:
|
390 |
-
content = json.dumps(element)
|
391 |
-
aas_content_string.append(content)
|
392 |
-
|
393 |
-
items = collection.count() # returns the number of items in the collection
|
394 |
-
print(collection)
|
395 |
-
print("Datenbank erstellt, Anzahl Items:")
|
396 |
-
print(items)
|
397 |
-
if items == 0:
|
398 |
-
# Hinzufügen der SE Inhalte, der Embeddings und weiterer Metadaten in collection der Datenbank
|
399 |
-
collection.add(
|
400 |
-
documents=aas_content_string,
|
401 |
-
embeddings=se_embedding_name_definition,
|
402 |
-
metadatas=metadata,
|
403 |
-
ids=aas_index_str,
|
404 |
-
)
|
405 |
-
items = collection.count() # returns the number of items in the collection
|
406 |
-
print("------------")
|
407 |
-
print("Datenbank befüllt, Anzahl items:")
|
408 |
-
print(items)
|
409 |
-
else:
|
410 |
-
print("-----------")
|
411 |
-
print("AAS schon vorhanden")
|
412 |
-
|
413 |
-
return collection
|
414 |
-
|
415 |
-
|
416 |
-
def read_aas(aas, submodels, assets, conceptDescriptions, submodels_ids, metalabel):
|
417 |
-
df = pd.DataFrame(
|
418 |
-
columns=[
|
419 |
-
"AASId",
|
420 |
-
"AASIdShort",
|
421 |
-
"SubmodelId",
|
422 |
-
"SubmodelName",
|
423 |
-
"SubmodelSemanticId",
|
424 |
-
"SEContent",
|
425 |
-
"SESemanticId",
|
426 |
-
"SEModelType",
|
427 |
-
"SEIdShort",
|
428 |
-
"SEValue",
|
429 |
-
"Definition",
|
430 |
-
"PreferredName",
|
431 |
-
"Datatype",
|
432 |
-
"Unit",
|
433 |
-
]
|
434 |
-
)
|
435 |
-
|
436 |
-
aas_id = aas[0]["identification"]["id"]
|
437 |
-
aas_name = aas[0]["idShort"]
|
438 |
-
# Aufbereiten aller Concept descriptions als pandas dataframe, damit diese nachher einfacher untersucht werden können
|
439 |
-
df_cd = prepare_cd(conceptDescriptions)
|
440 |
-
# Auslesen der Teilmodelle
|
441 |
-
for submodel in submodels:
|
442 |
-
submodel_name = submodel["idShort"]
|
443 |
-
submodel_id = submodel["identification"]["id"]
|
444 |
-
# Muss gemacht werden, da Anzahl der Teilmodelle innerhalb der AAS und des Env nicht immer übereisntimmen
|
445 |
-
if submodel_id in submodels_ids:
|
446 |
-
semantic_id_existing = submodel["semanticId"]["keys"]
|
447 |
-
if not semantic_id_existing:
|
448 |
-
submodel_semantic_id = "Not defined"
|
449 |
-
else:
|
450 |
-
submodel_semantic_id = semantic_id_existing[0]["value"]
|
451 |
-
submodel_elements = submodel["submodelElements"]
|
452 |
-
# Auslesen Submodel Elements
|
453 |
-
for submodel_element in submodel_elements:
|
454 |
-
content = []
|
455 |
-
content.append(submodel_element)
|
456 |
-
|
457 |
-
(
|
458 |
-
se_type,
|
459 |
-
se_semantic_id,
|
460 |
-
se_semantic_id_local,
|
461 |
-
se_id_short,
|
462 |
-
value,
|
463 |
-
) = get_values(submodel_element)
|
464 |
-
|
465 |
-
# When Concept Description local dann auslesen der Concept Description
|
466 |
-
if se_semantic_id_local == True:
|
467 |
-
cd_content = get_concept_description(se_semantic_id, df_cd)
|
468 |
-
definition = cd_content["Definition"]
|
469 |
-
preferred_name = cd_content["PreferredName"]
|
470 |
-
datatype = cd_content["Datatype"]
|
471 |
-
unit = cd_content["Unit"]
|
472 |
-
|
473 |
-
else:
|
474 |
-
definition = "NaN"
|
475 |
-
preferred_name = "NaN"
|
476 |
-
datatype = "NaN"
|
477 |
-
unit = "NaN"
|
478 |
-
|
479 |
-
new_row = pd.DataFrame(
|
480 |
-
{
|
481 |
-
"AASId": aas_id,
|
482 |
-
"AASIdShort": aas_name,
|
483 |
-
"SubmodelId": submodel_id,
|
484 |
-
"SubmodelName": submodel_name,
|
485 |
-
"SubmodelSemanticId": submodel_semantic_id,
|
486 |
-
"SEContent": content,
|
487 |
-
"SESemanticId": se_semantic_id,
|
488 |
-
"SEModelType": se_type,
|
489 |
-
"SEIdShort": se_id_short,
|
490 |
-
"SEValue": value,
|
491 |
-
"Definition": definition,
|
492 |
-
"PreferredName": preferred_name,
|
493 |
-
"Datatype": datatype,
|
494 |
-
"Unit": unit,
|
495 |
-
}
|
496 |
-
)
|
497 |
-
df = pd.concat([df, new_row], ignore_index=True)
|
498 |
-
|
499 |
-
# Wenn Submodel Element Collection dann diese Werte auch auslesen
|
500 |
-
if se_type == "SubmodelElementCollection":
|
501 |
-
df = get_values_sec(
|
502 |
-
df_cd,
|
503 |
-
content,
|
504 |
-
df,
|
505 |
-
aas_id,
|
506 |
-
aas_name,
|
507 |
-
submodel_id,
|
508 |
-
submodel_name,
|
509 |
-
submodel_semantic_id,
|
510 |
-
)
|
511 |
-
else:
|
512 |
-
continue
|
513 |
-
|
514 |
-
df = set_up_metadata(metalabel, df)
|
515 |
-
|
516 |
-
return df, aas_name
|
517 |
-
|
518 |
-
|
519 |
-
def index_corpus(data, model, metalabel, client_chroma):
|
520 |
-
# Start Punkt
|
521 |
-
|
522 |
-
aas = data["assetAdministrationShells"]
|
523 |
-
aas_submodels = aas[0]["submodels"]
|
524 |
-
submodels_ids = []
|
525 |
-
for submodel in aas_submodels:
|
526 |
-
submodels_ids.append(submodel["keys"][0]["value"])
|
527 |
-
submodels = data["submodels"]
|
528 |
-
conceptDescriptions = data["conceptDescriptions"]
|
529 |
-
assets = data["assets"]
|
530 |
-
|
531 |
-
aas_df, aas_name = read_aas(
|
532 |
-
aas, submodels, assets, conceptDescriptions, submodels_ids, metalabel
|
533 |
-
)
|
534 |
-
# aas_df_embeddings = encode(aas_df, model)
|
535 |
-
aas_df = encode(aas_df, model)
|
536 |
-
metadata, aas_index_str, se_content, se_embedding_name_definition = convert_to_list(
|
537 |
-
aas_df
|
538 |
-
)
|
539 |
-
collection = set_up_chroma(
|
540 |
-
metadata,
|
541 |
-
aas_index_str,
|
542 |
-
se_content,
|
543 |
-
se_embedding_name_definition,
|
544 |
-
aas_name,
|
545 |
-
client_chroma,
|
546 |
-
)
|
547 |
-
|
548 |
-
return collection
|
549 |
-
|
550 |
-
|
551 |
-
# if __name__ == '__main__':
|
552 |
-
# create_database = index_corpus(aas = 'festo_switch.json')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app/main.py
DELETED
@@ -1,90 +0,0 @@
|
|
1 |
-
from sentence_transformers import SentenceTransformer, util
|
2 |
-
|
3 |
-
# from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
|
4 |
-
import time
|
5 |
-
import os
|
6 |
-
import json
|
7 |
-
import pandas as pd
|
8 |
-
import numpy as np
|
9 |
-
import category_encoders as ce
|
10 |
-
import string
|
11 |
-
import pickle
|
12 |
-
import tqdm.autonotebook
|
13 |
-
from fastapi import FastAPI, Request, UploadFile, File
|
14 |
-
from joblib import dump, load
|
15 |
-
from pydantic import BaseModel
|
16 |
-
import sys
|
17 |
-
from database_build import index_corpus
|
18 |
-
from predict_se import ask_database
|
19 |
-
from typing import Any, Dict, AnyStr, List, Union
|
20 |
-
import chromadb
|
21 |
-
from chromadb.config import Settings
|
22 |
-
|
23 |
-
app = FastAPI(title="Interface Semantic Matching")
|
24 |
-
|
25 |
-
JSONObject = Dict[AnyStr, Any]
|
26 |
-
JSONArray = List[Any]
|
27 |
-
JSONStructure = Union[JSONArray, JSONObject]
|
28 |
-
|
29 |
-
|
30 |
-
class submodelElement(BaseModel):
|
31 |
-
datatype: str ="NaN"
|
32 |
-
definition: str
|
33 |
-
name: str
|
34 |
-
semantic_id: str
|
35 |
-
unit: str = "NaN"
|
36 |
-
return_matches: int = 3
|
37 |
-
|
38 |
-
@app.on_event("startup")
|
39 |
-
def load_hf_model():
|
40 |
-
global model
|
41 |
-
# Altes Modell
|
42 |
-
# model = SentenceTransformer('mboth/distil-eng-quora-sentence')
|
43 |
-
|
44 |
-
# Fine Tuned Modell
|
45 |
-
model = SentenceTransformer("gart-labor/eng-distilBERT-se-eclass")
|
46 |
-
|
47 |
-
# global model_translate
|
48 |
-
# model_translate = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
49 |
-
# global tokenizer_translate
|
50 |
-
# tokenizer_translate = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
51 |
-
|
52 |
-
with open("app/metadata.pickle", "rb") as handle:
|
53 |
-
global metalabel
|
54 |
-
metalabel = pickle.load(handle)
|
55 |
-
global client_chroma
|
56 |
-
client_chroma = chromadb.Client(
|
57 |
-
Settings(
|
58 |
-
chroma_api_impl="rest",
|
59 |
-
# chroma_server_host muss angepasst werden nach jedem Neustart AWS
|
60 |
-
chroma_server_host="3.67.80.82",
|
61 |
-
chroma_server_http_port=8000,
|
62 |
-
)
|
63 |
-
)
|
64 |
-
|
65 |
-
|
66 |
-
@app.post("/PostAssetAdministrationShellEmbeddings")
|
67 |
-
async def index_aas(aas: UploadFile = File(...)):
|
68 |
-
data = json.load(aas.file)
|
69 |
-
print(type(data))
|
70 |
-
# aas = new_file
|
71 |
-
#aas, submodels, conceptDescriptions, assets, aas_df, collection, aas_name= index_corpus(data, model, metalabel, client_chroma)
|
72 |
-
collection = index_corpus(data, model, metalabel, client_chroma)
|
73 |
-
ready = 'AAS ready'
|
74 |
-
return ready
|
75 |
-
|
76 |
-
|
77 |
-
@app.post("/GetAllSubmodelElementsBySemanticIdAndSemanticInformation")
|
78 |
-
def predict(name: str, definition: str, semantic_id: str, unit: str, datatype: str, return_matches: int):
|
79 |
-
collections = client_chroma.list_collections()
|
80 |
-
query = {
|
81 |
-
"Name": name,
|
82 |
-
"Definition": definition,
|
83 |
-
"Unit": unit,
|
84 |
-
"Datatype": datatype,
|
85 |
-
"SemanticId": semantic_id,
|
86 |
-
"ReturnMatches": return_matches,
|
87 |
-
}
|
88 |
-
results = ask_database(query, metalabel, model, collections, client_chroma)
|
89 |
-
|
90 |
-
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app/metadata.pickle
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:2b4aee0cd2ca534e4af8023bd334db591a0a46b2a37154758aa5e3873b8d4728
|
3 |
-
size 1670
|
|
|
|
|
|
|
|
app/predict_se.py
DELETED
@@ -1,264 +0,0 @@
|
|
1 |
-
from sentence_transformers import SentenceTransformer, util
|
2 |
-
import json
|
3 |
-
import time
|
4 |
-
import pandas as pd
|
5 |
-
import numpy as np
|
6 |
-
import pickle
|
7 |
-
|
8 |
-
import chromadb
|
9 |
-
from chromadb.config import Settings
|
10 |
-
from chromadb.utils import embedding_functions
|
11 |
-
from chromadb.db.clickhouse import NoDatapointsException
|
12 |
-
|
13 |
-
|
14 |
-
def query_aas(query_json, collection, model, metalabel):
|
15 |
-
query = json.loads(query_json)
|
16 |
-
name = query["Name"]
|
17 |
-
definition = query["Definition"]
|
18 |
-
unit = query["Unit"]
|
19 |
-
datatype = query["Datatype"]
|
20 |
-
semantic_id = query["SemanticId"]
|
21 |
-
return_matches = query["ReturnMatches"]
|
22 |
-
|
23 |
-
#model = SentenceTransformer("gart-labor/eng-distilBERT-se-eclass")
|
24 |
-
|
25 |
-
datatype_mapping = {
|
26 |
-
"boolean": "BOOLEAN",
|
27 |
-
"string": "STRING",
|
28 |
-
"string_translatable": "STRING",
|
29 |
-
"translatable_string": "STRING",
|
30 |
-
"non_translatable_string": "STRING",
|
31 |
-
"date": "DATE",
|
32 |
-
"data_time": "DATE",
|
33 |
-
"uri": "URI",
|
34 |
-
"int": "INT",
|
35 |
-
"int_measure": "INT",
|
36 |
-
"int_currency": "INT",
|
37 |
-
"integer": "INT",
|
38 |
-
"real": "REAL",
|
39 |
-
"real_measure": "REAL",
|
40 |
-
"real_currency": "REAL",
|
41 |
-
"enum_code": "ENUM_CODE",
|
42 |
-
"enum_int": "ENUM_CODE",
|
43 |
-
"ENUM_REAL": "ENUM_CODE",
|
44 |
-
"ENUM_RATIONAL": "ENUM_CODE",
|
45 |
-
"ENUM_BOOLEAN": "ENUM_CODE",
|
46 |
-
"ENUM_STRING": "ENUM_CODE",
|
47 |
-
"enum_reference": "ENUM_CODE",
|
48 |
-
"enum_instance": "ENUM_CODE",
|
49 |
-
"set(b1,b2)": "SET",
|
50 |
-
"constrained_set(b1,b2,cmn,cmx)": "SET",
|
51 |
-
"set [0,?]": "SET",
|
52 |
-
"set [1,?]": "SET",
|
53 |
-
"set [1, ?]": "SET",
|
54 |
-
"nan": "NaN",
|
55 |
-
"media_type": "LARGE_OBJECT_TYPE",
|
56 |
-
}
|
57 |
-
|
58 |
-
unit_mapping = {
|
59 |
-
"nan": "NaN",
|
60 |
-
"hertz": "FREQUENCY",
|
61 |
-
"hz": "FREQUENCY",
|
62 |
-
"pa": "PRESSURE",
|
63 |
-
"pascal": "PRESSURE",
|
64 |
-
"n/m²": "PRESSURE",
|
65 |
-
"bar": "PRESSURE",
|
66 |
-
"%": "SCALARS_PERC",
|
67 |
-
"w": "POWER",
|
68 |
-
"watt": "POWER",
|
69 |
-
"kw": "POWER",
|
70 |
-
"kg/m³": "CHEMISTRY",
|
71 |
-
"m²/s": "CHEMISTRY",
|
72 |
-
"pa*s": "CHEMISTRY",
|
73 |
-
"v": "ELECTRICAL",
|
74 |
-
"volt": "ELECTRICAL",
|
75 |
-
"db": "ACOUSTICS",
|
76 |
-
"db(a)": "ACOUSTICS",
|
77 |
-
"k": "TEMPERATURE",
|
78 |
-
"°c": "TEMPERATURE",
|
79 |
-
"n": "MECHANICS",
|
80 |
-
"newton": "MECHANICS",
|
81 |
-
"kg/s": "FLOW",
|
82 |
-
"kg/h": "FLOW",
|
83 |
-
"m³/s": "FLOW",
|
84 |
-
"m³/h": "FLOW",
|
85 |
-
"l/s": "FLOW",
|
86 |
-
"l/h": "FLOW",
|
87 |
-
"µm": "LENGTH",
|
88 |
-
"mm": "LENGTH",
|
89 |
-
"cm": "LENGTH",
|
90 |
-
"dm": "LENGTH",
|
91 |
-
"m": "LENGTH",
|
92 |
-
"meter": "LENGTH",
|
93 |
-
"m/s": "SPEED",
|
94 |
-
"km/h": "SPEED",
|
95 |
-
"s^(-1)": "FREQUENCY",
|
96 |
-
"1/s": "FREQUENCY",
|
97 |
-
"s": "TIME",
|
98 |
-
"h": "TIME",
|
99 |
-
"min": "TIME",
|
100 |
-
"d": "TIME",
|
101 |
-
"hours": "TIME",
|
102 |
-
"a": "ELECTRICAL",
|
103 |
-
"m³": "VOLUME",
|
104 |
-
"m²": "AREA",
|
105 |
-
"rpm": "FLOW",
|
106 |
-
"nm": "MECHANICS",
|
107 |
-
"m/m": "MECHANICS",
|
108 |
-
"m³/m²s": "MECHANICS",
|
109 |
-
"w(m²*K)": "HEAT_TRANSFER",
|
110 |
-
"kwh": "ELECTRICAL",
|
111 |
-
"kg/(s*m²)": "FLOW",
|
112 |
-
"kg": "MASS",
|
113 |
-
"w/(m*k)": "HEAT_TRANSFER",
|
114 |
-
"m²*k/w": "HEAT_TRANSFER",
|
115 |
-
"j/s": "POWER",
|
116 |
-
}
|
117 |
-
|
118 |
-
#with open(
|
119 |
-
# "./drive/My Drive/Colab/NLP/SemantischeInteroperabilität/Deployment/metadata.pickle",
|
120 |
-
# "rb",
|
121 |
-
#) as handle:
|
122 |
-
# metalabel = pickle.load(handle)
|
123 |
-
|
124 |
-
unit_lower = unit.lower()
|
125 |
-
datatype_lower = datatype.lower()
|
126 |
-
|
127 |
-
unit_categ = unit_mapping.get(unit_lower)
|
128 |
-
datatype_categ = datatype_mapping.get(datatype_lower)
|
129 |
-
|
130 |
-
if unit_categ == None:
|
131 |
-
unit_categ = "NaN"
|
132 |
-
if datatype_categ == None:
|
133 |
-
datatype_categ = "NaN"
|
134 |
-
|
135 |
-
concat = (unit_categ, datatype_categ)
|
136 |
-
keys = [k for k, v in metalabel.items() if v == concat]
|
137 |
-
metadata = keys[0]
|
138 |
-
|
139 |
-
name_embedding = model.encode(name)
|
140 |
-
definition_embedding = model.encode(definition)
|
141 |
-
concat_name_def_query = np.concatenate(
|
142 |
-
(definition_embedding, name_embedding), axis=0
|
143 |
-
)
|
144 |
-
concat_name_def_query = concat_name_def_query.tolist()
|
145 |
-
|
146 |
-
queries = [concat_name_def_query]
|
147 |
-
print(type(queries))
|
148 |
-
|
149 |
-
# Query wird mit Semantic Search, k-nearest-neighbor durchgeführt
|
150 |
-
# Chroma verwendet hierfür hnswlib https://github.com/nmslib/hnswlib
|
151 |
-
# Dort kann als Distanz Cosine, Squared L2 oder Inner Product eingestellt werden
|
152 |
-
# In Chroma ist L2 als Distanz eingestellt, vgl. https://github.com/chroma-core/chroma/blob/4463d13f951a4d28ade1f7e777d07302ff09069b/chromadb/db/index/hnswlib.py -> suche nach l2
|
153 |
-
|
154 |
-
# Homogener fall, untersuchen nach Semant Ids, wenn welche gefunden werden, ist homgen erfolgreich
|
155 |
-
try:
|
156 |
-
homogen = collection.query(
|
157 |
-
query_embeddings=queries, n_results=1, where={"SESemanticId": semantic_id}
|
158 |
-
)
|
159 |
-
# except NoDatapointsException:
|
160 |
-
# homogen = 'Nix'
|
161 |
-
|
162 |
-
except Exception:
|
163 |
-
homogen = "Nix"
|
164 |
-
|
165 |
-
if homogen != "Nix":
|
166 |
-
result = homogen
|
167 |
-
result["matching_method"] = "Semantic equivalent , same semantic Id"
|
168 |
-
result["matching_algorithm"] = "None"
|
169 |
-
result["distances"] = [[0]]
|
170 |
-
|
171 |
-
final_result = {
|
172 |
-
"matching_method": result['matching_method'],
|
173 |
-
"matching_algorithm": result['matching_algorithm'],
|
174 |
-
"matching_distance": result['distances'][0][0],
|
175 |
-
"aas_id": result['metadatas'][0][0]['AASId'],
|
176 |
-
"aas_id_short": result['metadatas'][0][0]['AASIdShort'],
|
177 |
-
"submodel_id_short": result['metadatas'][0][0]['SubmodelName'],
|
178 |
-
"submodel_id": result['metadatas'][0][0]['SubmodelId'],
|
179 |
-
"matched_object": result['documents'][0][0],
|
180 |
-
}
|
181 |
-
final_results = [final_result]
|
182 |
-
# Wenn keine passende semantic id gefunden, dann weiter mit NLP mit und ohne Metadaten
|
183 |
-
elif homogen == "Nix":
|
184 |
-
try:
|
185 |
-
with_metadata = collection.query(
|
186 |
-
query_embeddings=queries,
|
187 |
-
n_results=return_matches,
|
188 |
-
where={"Metalabel": metadata},
|
189 |
-
)
|
190 |
-
|
191 |
-
# except NoDatapointsException:
|
192 |
-
# with_metadata = 'Nix'
|
193 |
-
|
194 |
-
except Exception:
|
195 |
-
with_metadata = "Nix"
|
196 |
-
|
197 |
-
without_metadata = collection.query(
|
198 |
-
query_embeddings=queries,
|
199 |
-
n_results=return_matches,
|
200 |
-
)
|
201 |
-
|
202 |
-
if with_metadata == "Nix":
|
203 |
-
result = without_metadata
|
204 |
-
result[
|
205 |
-
"matching_method"
|
206 |
-
] = "Semantically not equivalent, NLP without Metadata"
|
207 |
-
result[
|
208 |
-
"matching_algorithm"
|
209 |
-
] = "Semantic search, k-nearest-neighbor with squared L2 distance (euclidean distance), with model gart-labor/eng-distilBERT-se-eclass"
|
210 |
-
|
211 |
-
elif with_metadata != "Nix":
|
212 |
-
distance_with_meta = with_metadata["distances"][0][0]
|
213 |
-
distance_without_meta = without_metadata["distances"][0][0]
|
214 |
-
print(distance_with_meta)
|
215 |
-
print(distance_without_meta)
|
216 |
-
# Vergleich der Abstände von mit und ohne Metadaten
|
217 |
-
if distance_without_meta <= distance_with_meta:
|
218 |
-
result = without_metadata
|
219 |
-
result[
|
220 |
-
"matching_method"
|
221 |
-
] = "Semantically not equivalent, NLP without Metadata"
|
222 |
-
result[
|
223 |
-
"matching_algorithm"
|
224 |
-
] = "Semantic search, k-nearest-neighbor with squared L2 distance (euclidean distance), with model gart-labor/eng-distilBERT-se-eclass"
|
225 |
-
|
226 |
-
else:
|
227 |
-
result = with_metadata
|
228 |
-
result[
|
229 |
-
"matching_method"
|
230 |
-
] = "Semantically not equivalent, NLP without Metadata"
|
231 |
-
result[
|
232 |
-
"matching_algorithm"
|
233 |
-
] = "Semantic search, k-nearest-neighbor with squared L2 distance (euclidean distance), with model gart-labor/eng-distilBERT-se-eclass"
|
234 |
-
# Aufbereiten des passenden finalen Ergebnisses
|
235 |
-
final_results = []
|
236 |
-
for i in range(0, return_matches):
|
237 |
-
value = result['documents'][0][i]
|
238 |
-
value_dict = json.loads(value)
|
239 |
-
final_result = {
|
240 |
-
"matching_method": result['matching_method'],
|
241 |
-
"matching_algorithm": result['matching_algorithm'],
|
242 |
-
"matching_distance": result['distances'][0][i],
|
243 |
-
"aas_id": result['metadatas'][0][i]['AASId'],
|
244 |
-
"aas_id_short": result['metadatas'][0][i]['AASIdShort'],
|
245 |
-
"submodel_id_short": result['metadatas'][0][i]['SubmodelName'],
|
246 |
-
"submodel_id": result['metadatas'][0][i]['SubmodelId'],
|
247 |
-
#"matched_object": result['documents'][0][i]
|
248 |
-
"matched_object": value_dict
|
249 |
-
}
|
250 |
-
final_results.append(final_result)
|
251 |
-
return final_results
|
252 |
-
|
253 |
-
|
254 |
-
def ask_database(query, metalabel, model, collections, client_chroma):
|
255 |
-
# Alle AAS werden nacheinaner abgefragt
|
256 |
-
json_query = json.dumps(query, indent=4)
|
257 |
-
results = []
|
258 |
-
for collection in collections:
|
259 |
-
print(collection.name)
|
260 |
-
collection = client_chroma.get_collection(collection.name)
|
261 |
-
result = query_aas(json_query, collection, model, metalabel)
|
262 |
-
results.append(result)
|
263 |
-
#results_json = json.dumps(results)
|
264 |
-
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|