File size: 2,460 Bytes
78ba245 6bcd01d 1e2a87b 78ba245 6bcd01d 78ba245 ddb72fb 78ba245 06cb1ab 78ba245 ddb72fb 78ba245 6bcd01d 3ff2ab1 6bcd01d 78ba245 a32c94c 78ba245 6bcd01d 78ba245 6bcd01d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import torch
LANGS = ["kin_Latn","eng_Latn"]
TASK = "translation"
# CKPT = "DigitalUmuganda/Finetuned-NLLB"
# MODELS = ["facebook/nllb-200-distilled-600M","DigitalUmuganda/Finetuned-NLLB"]
# model = AutoModelForSeq2SeqLM.from_pretrained(CKPT)
# tokenizer = AutoTokenizer.from_pretrained(CKPT)
device = 0 if torch.cuda.is_available() else -1
general_model = AutoModelForSeq2SeqLM.from_pretrained("mbazaNLP/Nllb_finetuned_general_en_kin")
#education_model = AutoModelForSeq2SeqLM.from_pretrained("mbazaNLP/Nllb_finetuned_education_en_kin")
#tourism_model = AutoModelForSeq2SeqLM.from_pretrained("mbazaNLP/Nllb_finetuned_tourism_en_kin")
#MODELS = {"General model":general_model_model,"Education model":education_model,"Tourism model":tourism_model}
#MODELS = {"Education model":education_model,"Tourism model":tourism_model}
tokenizer = AutoTokenizer.from_pretrained("mbazaNLP/Nllb_finetuned_general_en_kin")
# def translate(text, src_lang, tgt_lang, max_length=400):
TASK = "translation"
device = 0 if torch.cuda.is_available() else -1
def translate(text, source_lang, target_lang, max_length=450):
"""
Translate text from source language to target language
"""
# src_lang = choose_language(source_lang)
# tgt_lang= choose_language(target_lang)
# if src_lang==None:
# return "Error: the source langage is incorrect"
# elif tgt_lang==None:
# return "Error: the target language is incorrect"
translation_pipeline = pipeline(TASK,
model=general_model,
tokenizer=tokenizer,
src_lang=source_lang,
tgt_lang=target_lang,
max_length=max_length,
device=device)
result = translation_pipeline(text)
return result[0]['translation_text']
gradio_ui= gr.Interface(
fn=translate,
title="NLLB-General EN-KIN Translation Demo",
inputs= [
gr.components.Textbox(label="Text"),
gr.components.Dropdown(label="Source Language", choices=LANGS),
gr.components.Dropdown(label="Target Language", choices=LANGS),
# gr.components.Slider(8, 400, value=400, step=8, label="Max Length")
],
outputs=gr.outputs.Textbox(label="Translated text")
)
gradio_ui.launch() |