Spaces:
Running
Running
File size: 15,804 Bytes
c9baa67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
# pylint: disable=missing-module-docstring,invalid-name
# pylint: disable=missing-docstring
# pylint: disable=line-too-long
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
class LayerNorm(nn.Module):
r"""Applies Layer Normalization over a mini-batch of inputs as described in
the paper `Layer Normalization`_ .
.. math::
y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
The mean and standard-deviation are calculated separately over the last
certain number dimensions which have to be of the shape specified by
:attr:`normalized_shape`.
:math:`\gamma` and :math:`\beta` are learnable affine transform parameters of
:attr:`normalized_shape` if :attr:`elementwise_affine` is ``True``.
.. note::
Unlike Batch Normalization and Instance Normalization, which applies
scalar scale and bias for each entire channel/plane with the
:attr:`affine` option, Layer Normalization applies per-element scale and
bias with :attr:`elementwise_affine`.
This layer uses statistics computed from input data in both training and
evaluation modes.
Args:
normalized_shape (int or list or torch.Size): input shape from an expected input
of size
.. math::
[* \times \text{normalized\_shape}[0] \times \text{normalized\_shape}[1]
\times \ldots \times \text{normalized\_shape}[-1]]
If a single integer is used, it is treated as a singleton list, and this module will
normalize over the last dimension which is expected to be of that specific size.
eps: a value added to the denominator for numerical stability. Default: 1e-5
elementwise_affine: a boolean value that when set to ``True``, this module
has learnable per-element affine parameters initialized to ones (for weights)
and zeros (for biases). Default: ``True``.
Shape:
- Input: :math:`(N, *)`
- Output: :math:`(N, *)` (same shape as input)
Examples::
>>> input = torch.randn(20, 5, 10, 10)
>>> # With Learnable Parameters
>>> m = nn.LayerNorm(input.size()[1:])
>>> # Without Learnable Parameters
>>> m = nn.LayerNorm(input.size()[1:], elementwise_affine=False)
>>> # Normalize over last two dimensions
>>> m = nn.LayerNorm([10, 10])
>>> # Normalize over last dimension of size 10
>>> m = nn.LayerNorm(10)
>>> # Activating the module
>>> output = m(input)
.. _`Layer Normalization`: https://arxiv.org/abs/1607.06450
"""
__constants__ = ['features', 'weight', 'bias', 'eps', 'center', 'scale']
def __init__(self, features, eps=1e-12, center=True, scale=True):
super(LayerNorm, self).__init__()
self.features = features
self.eps = eps
self.center = center
self.scale = scale
if self.scale:
self.weight = nn.Parameter(torch.Tensor(self.features))
else:
self.register_parameter('weight', None)
if self.center:
self.bias = nn.Parameter(torch.Tensor(self.features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
if self.scale:
nn.init.ones_(self.weight)
if self.center:
nn.init.zeros_(self.bias)
def adjust_parameter(self, tensor, parameter):
return torch.repeat_interleave(
torch.repeat_interleave(
parameter.view(-1, 1, 1),
repeats=tensor.shape[2],
dim=1),
repeats=tensor.shape[3],
dim=2
)
def forward(self, input):
normalized_shape = (self.features, input.shape[2], input.shape[3])
weight = self.adjust_parameter(input, self.weight)
bias = self.adjust_parameter(input, self.bias)
return F.layer_norm(
input, normalized_shape, weight, bias, self.eps)
def extra_repr(self):
return '{features}, eps={eps}, ' \
'center={center}, scale={scale}'.format(**self.__dict__)
def gaussian_filter_1d(tensor, dim, sigma, truncate=4, kernel_size=None, padding_mode='replicate', padding_value=0.0):
sigma = torch.as_tensor(sigma, device=tensor.device, dtype=tensor.dtype)
if kernel_size is not None:
kernel_size = torch.as_tensor(kernel_size, device=tensor.device, dtype=torch.int64)
else:
kernel_size = torch.as_tensor(2 * torch.ceil(truncate * sigma) + 1, device=tensor.device, dtype=torch.int64)
kernel_size = kernel_size.detach()
kernel_size_int = kernel_size.detach().cpu().numpy()
mean = (torch.as_tensor(kernel_size, dtype=tensor.dtype) - 1) / 2
grid = torch.arange(kernel_size, device=tensor.device) - mean
kernel_shape = (1, 1, kernel_size)
grid = grid.view(kernel_shape)
grid = grid.detach()
source_shape = tensor.shape
tensor = torch.movedim(tensor, dim, len(source_shape)-1)
dim_last_shape = tensor.shape
assert tensor.shape[-1] == source_shape[dim]
# we need reshape instead of view for batches like B x C x H x W
tensor = tensor.reshape(-1, 1, source_shape[dim])
padding = (math.ceil((kernel_size_int - 1) / 2), math.ceil((kernel_size_int - 1) / 2))
tensor_ = F.pad(tensor, padding, padding_mode, padding_value)
# create gaussian kernel from grid using current sigma
kernel = torch.exp(-0.5 * (grid / sigma) ** 2)
kernel = kernel / kernel.sum()
# convolve input with gaussian kernel
tensor_ = F.conv1d(tensor_, kernel)
tensor_ = tensor_.view(dim_last_shape)
tensor_ = torch.movedim(tensor_, len(source_shape)-1, dim)
assert tensor_.shape == source_shape
return tensor_
class GaussianFilterNd(nn.Module):
"""A differentiable gaussian filter"""
def __init__(self, dims, sigma, truncate=4, kernel_size=None, padding_mode='replicate', padding_value=0.0,
trainable=False):
"""Creates a 1d gaussian filter
Args:
dims ([int]): the dimensions to which the gaussian filter is applied. Negative values won't work
sigma (float): standard deviation of the gaussian filter (blur size)
input_dims (int, optional): number of input dimensions ignoring batch and channel dimension,
i.e. use input_dims=2 for images (default: 2).
truncate (float, optional): truncate the filter at this many standard deviations (default: 4.0).
This has no effect if the `kernel_size` is explicitely set
kernel_size (int): size of the gaussian kernel convolved with the input
padding_mode (string, optional): Padding mode implemented by `torch.nn.functional.pad`.
padding_value (string, optional): Value used for constant padding.
"""
# IDEA determine input_dims dynamically for every input
super(GaussianFilterNd, self).__init__()
self.dims = dims
self.sigma = nn.Parameter(torch.tensor(sigma, dtype=torch.float32), requires_grad=trainable) # default: no optimization
self.truncate = truncate
self.kernel_size = kernel_size
# setup padding
self.padding_mode = padding_mode
self.padding_value = padding_value
def forward(self, tensor):
"""Applies the gaussian filter to the given tensor"""
for dim in self.dims:
tensor = gaussian_filter_1d(
tensor,
dim=dim,
sigma=self.sigma,
truncate=self.truncate,
kernel_size=self.kernel_size,
padding_mode=self.padding_mode,
padding_value=self.padding_value,
)
return tensor
class Conv2dMultiInput(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, bias=True):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
for k, _in_channels in enumerate(in_channels):
if _in_channels:
setattr(self, f'conv_part{k}', nn.Conv2d(_in_channels, out_channels, kernel_size, bias=bias))
def forward(self, tensors):
assert len(tensors) == len(self.in_channels)
out = None
for k, (count, tensor) in enumerate(zip(self.in_channels, tensors)):
if not count:
continue
_out = getattr(self, f'conv_part{k}')(tensor)
if out is None:
out = _out
else:
out += _out
return out
# def extra_repr(self):
# return f'{self.in_channels}'
class LayerNormMultiInput(nn.Module):
__constants__ = ['features', 'weight', 'bias', 'eps', 'center', 'scale']
def __init__(self, features, eps=1e-12, center=True, scale=True):
super().__init__()
self.features = features
self.eps = eps
self.center = center
self.scale = scale
for k, _features in enumerate(features):
if _features:
setattr(self, f'layernorm_part{k}', LayerNorm(_features, eps=eps, center=center, scale=scale))
def forward(self, tensors):
assert len(tensors) == len(self.features)
out = []
for k, (count, tensor) in enumerate(zip(self.features, tensors)):
if not count:
assert tensor is None
out.append(None)
continue
out.append(getattr(self, f'layernorm_part{k}')(tensor))
return out
class Bias(nn.Module):
def __init__(self, channels):
super().__init__()
self.channels = channels
self.bias = nn.Parameter(torch.zeros(channels))
def forward(self, tensor):
return tensor + self.bias[np.newaxis, :, np.newaxis, np.newaxis]
def extra_repr(self):
return f'channels={self.channels}'
class SelfAttention(nn.Module):
""" Self attention Layer
adapted from https://discuss.pytorch.org/t/attention-in-image-classification/80147/3
"""
def __init__(self, in_channels, out_channels=None, key_channels=None, activation=None, skip_connection_with_convolution=False, return_attention=True):
super().__init__()
self.in_channels = in_channels
if out_channels is None:
out_channels = in_channels
self.out_channels = out_channels
if key_channels is None:
key_channels = in_channels // 8
self.key_channels = key_channels
self.activation = activation
self.skip_connection_with_convolution = skip_connection_with_convolution
if not self.skip_connection_with_convolution:
if self.out_channels != self.in_channels:
raise ValueError("out_channels has to be equal to in_channels with true skip connection!")
self.return_attention = return_attention
self.query_conv = nn.Conv2d(in_channels=in_channels, out_channels=key_channels, kernel_size=1)
self.key_conv = nn.Conv2d(in_channels=in_channels, out_channels=key_channels, kernel_size=1)
self.value_conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1)
self.gamma = nn.Parameter(torch.zeros(1))
if self.skip_connection_with_convolution:
self.skip_conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x):
"""
inputs :
x : input feature maps( B X C X W X H)
returns :
out : self attention value + input feature
attention: B X N X N (N is Width*Height)
"""
m_batchsize, C, width, height = x.size()
proj_query = self.query_conv(x).view(m_batchsize, -1, width * height).permute(0, 2, 1) # B X CX(N)
proj_key = self.key_conv(x).view(m_batchsize, -1, width * height) # B X C x (*W*H)
energy = torch.bmm(proj_query, proj_key) # transpose check
attention = self.softmax(energy) # BX (N) X (N)
proj_value = self.value_conv(x).view(m_batchsize, -1, width * height) # B X C X N
out = torch.bmm(proj_value, attention.permute(0, 2, 1))
out = out.view(m_batchsize, self.out_channels, width, height)
if self.skip_connection_with_convolution:
skip_connection = self.skip_conv(x)
else:
skip_connection = x
out = self.gamma * out + skip_connection
if self.activation is not None:
out = self.activation(out)
if self.return_attention:
return out, attention
return out
class MultiHeadSelfAttention(nn.Module):
""" Self attention Layer
adapted from https://discuss.pytorch.org/t/attention-in-image-classification/80147/3
"""
def __init__(self, in_channels, heads, out_channels=None, key_channels=None, activation=None, skip_connection_with_convolution=False):
super().__init__()
self.heads = heads
self.heads = nn.ModuleList([SelfAttention(
in_channels=in_channels,
out_channels=out_channels,
key_channels=key_channels,
activation=activation,
skip_connection_with_convolution=skip_connection_with_convolution,
return_attention=False,
) for _ in range(heads)])
def forward(self, tensor):
outs = [head(tensor) for head in self.heads]
out = torch.cat(outs, dim=1)
return out
class FlexibleScanpathHistoryEncoding(nn.Module):
"""
a convolutional layer which works for different numbers of previous fixations.
Nonexistent fixations will deactivate the respective convolutions
the bias will be added per fixation (if the given fixation is present)
"""
def __init__(self, in_fixations, channels_per_fixation, out_channels, kernel_size, bias=True,):
super().__init__()
self.in_fixations = in_fixations
self.channels_per_fixation = channels_per_fixation
self.out_channels = out_channels
self.kernel_size = kernel_size
self.bias = bias
self.convolutions = nn.ModuleList([
nn.Conv2d(
in_channels=self.channels_per_fixation,
out_channels=self.out_channels,
kernel_size=self.kernel_size,
bias=self.bias
) for i in range(in_fixations)
])
def forward(self, tensor):
results = None
valid_fixations = ~torch.isnan(
tensor[:, :self.in_fixations, 0, 0]
)
# print("valid fix", valid_fixations)
for fixation_index in range(self.in_fixations):
valid_indices = valid_fixations[:, fixation_index]
if not torch.any(valid_indices):
continue
this_input = tensor[
valid_indices,
fixation_index::self.in_fixations
]
this_result = self.convolutions[fixation_index](
this_input
)
# TODO: This will break if all data points
# in the batch don't have a single fixation
# but that's not a case I intend to train
# anyway.
if results is None:
b, _, _, _ = tensor.shape
_, _, h, w = this_result.shape
results = torch.zeros(
(b, self.out_channels, h, w),
dtype=tensor.dtype,
device=tensor.device
)
results[valid_indices] += this_result
return results
|