Spaces:
Running
on
Zero
Running
on
Zero
import random | |
from typing import Dict, Optional, Tuple | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
from omegaconf import DictConfig | |
from tools.torch_utils import persistence | |
from tools.torch_utils.ops import bias_act, upfirdn2d, conv2d_resample | |
from tools.torch_utils import misc | |
#---------------------------------------------------------------------------- | |
def normalize_2nd_moment(x, dim=1, eps=1e-8): | |
return x * (x.square().mean(dim=dim, keepdim=True) + eps).rsqrt() | |
#---------------------------------------------------------------------------- | |
class MappingNetwork(torch.nn.Module): | |
def __init__(self, | |
z_dim, # Input latent (Z) dimensionality, 0 = no latent. | |
c_dim, # Conditioning label (C) dimensionality, 0 = no label. | |
w_dim, # Intermediate latent (W) dimensionality. | |
num_ws, # Number of intermediate latents to output, None = do not broadcast. | |
num_layers = 8, # Number of mapping layers. | |
embed_features = None, # Label embedding dimensionality, None = same as w_dim. | |
layer_features = None, # Number of intermediate features in the mapping layers, None = same as w_dim. | |
activation = 'lrelu', # Activation function: 'relu', 'lrelu', etc. | |
lr_multiplier = 0.01, # Learning rate multiplier for the mapping layers. | |
w_avg_beta = 0.995, # Decay for tracking the moving average of W during training, None = do not track. | |
cfg = {}, # Additional config | |
): | |
super().__init__() | |
self.cfg = cfg | |
self.z_dim = z_dim | |
self.c_dim = c_dim | |
self.w_dim = w_dim | |
self.num_ws = num_ws | |
self.num_layers = num_layers | |
self.w_avg_beta = w_avg_beta | |
if embed_features is None: | |
embed_features = w_dim | |
if c_dim == 0: | |
embed_features = 0 | |
if layer_features is None: | |
layer_features = w_dim | |
features_list = [z_dim + embed_features] + [layer_features] * (num_layers - 1) + [w_dim] | |
if c_dim > 0: | |
self.embed = FullyConnectedLayer(c_dim, embed_features) | |
for idx in range(num_layers): | |
in_features = features_list[idx] | |
out_features = features_list[idx + 1] | |
layer = FullyConnectedLayer(in_features, out_features, activation=activation, lr_multiplier=lr_multiplier) | |
setattr(self, f'fc{idx}', layer) | |
if num_ws is not None and w_avg_beta is not None: | |
self.register_buffer('w_avg', torch.zeros([w_dim])) | |
def forward(self, z, c, truncation_psi=1, truncation_cutoff=None, skip_w_avg_update=False): | |
# Embed, normalize, and concat inputs. | |
x = None | |
with torch.autograd.profiler.record_function('input'): | |
if self.z_dim > 0: | |
misc.assert_shape(z, [None, self.z_dim]) | |
x = normalize_2nd_moment(z.to(torch.float32)) | |
if self.c_dim > 0: | |
misc.assert_shape(c, [None, self.c_dim]) | |
y = normalize_2nd_moment(self.embed(c.to(torch.float32))) | |
x = torch.cat([x, y], dim=1) if x is not None else y | |
# Main layers. | |
for idx in range(self.num_layers): | |
layer = getattr(self, f'fc{idx}') | |
x = layer(x) | |
# Update moving average of W. | |
if self.w_avg_beta is not None and self.training and not skip_w_avg_update: | |
with torch.autograd.profiler.record_function('update_w_avg'): | |
self.w_avg.copy_(x.detach().mean(dim=0).lerp(self.w_avg, self.w_avg_beta)) | |
# Broadcast. | |
if self.num_ws is not None: | |
with torch.autograd.profiler.record_function('broadcast'): | |
x = x.unsqueeze(1).repeat([1, self.num_ws, 1]) | |
# Apply truncation. | |
if truncation_psi != 1: | |
with torch.autograd.profiler.record_function('truncate'): | |
assert self.w_avg_beta is not None | |
if self.num_ws is None or truncation_cutoff is None: | |
x = self.w_avg.lerp(x, truncation_psi) | |
else: | |
x[:, :truncation_cutoff] = self.w_avg.lerp(x[:, :truncation_cutoff], truncation_psi) | |
return x | |
#---------------------------------------------------------------------------- | |
class FullyConnectedLayer(torch.nn.Module): | |
def __init__(self, | |
in_features, # Number of input features. | |
out_features, # Number of output features. | |
bias = True, # Apply additive bias before the activation function? | |
activation = 'linear', # Activation function: 'relu', 'lrelu', etc. | |
lr_multiplier = 1, # Learning rate multiplier. | |
bias_init = 0, # Initial value for the additive bias. | |
): | |
super().__init__() | |
self.activation = activation | |
self.weight = torch.nn.Parameter(torch.randn([out_features, in_features]) / lr_multiplier) | |
self.bias = torch.nn.Parameter(torch.full([out_features], float(bias_init))) if bias else None | |
self.weight_gain = lr_multiplier / np.sqrt(in_features) | |
self.bias_gain = lr_multiplier | |
def forward(self, x): | |
w = self.weight.to(x.dtype) * self.weight_gain | |
b = self.bias | |
if b is not None: | |
b = b.to(x.dtype) | |
if self.bias_gain != 1: | |
b = b * self.bias_gain | |
if self.activation == 'linear' and b is not None: | |
x = torch.addmm(b.unsqueeze(0), x, w.t()) | |
else: | |
x = x.matmul(w.t()) | |
x = bias_act.bias_act(x, b, act=self.activation) | |
return x | |
#---------------------------------------------------------------------------- | |
class Conv2dLayer(torch.nn.Module): | |
def __init__(self, | |
in_channels, # Number of input channels. | |
out_channels, # Number of output channels. | |
kernel_size, # Width and height of the convolution kernel. | |
bias = True, # Apply additive bias before the activation function? | |
activation = 'linear', # Activation function: 'relu', 'lrelu', etc. | |
up = 1, # Integer upsampling factor. | |
down = 1, # Integer downsampling factor. | |
resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations. | |
conv_clamp = None, # Clamp the output to +-X, None = disable clamping. | |
channels_last = False, # Expect the input to have memory_format=channels_last? | |
trainable = True, # Update the weights of this layer during training? | |
instance_norm = False, # Should we apply instance normalization to y? | |
lr_multiplier = 1.0, # Learning rate multiplier. | |
): | |
super().__init__() | |
self.activation = activation | |
self.up = up | |
self.down = down | |
self.conv_clamp = conv_clamp | |
self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter)) | |
self.padding = kernel_size // 2 | |
self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size ** 2)) | |
self.act_gain = bias_act.activation_funcs[activation].def_gain | |
self.instance_norm = instance_norm | |
self.lr_multiplier = lr_multiplier | |
memory_format = torch.channels_last if channels_last else torch.contiguous_format | |
weight = torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to(memory_format=memory_format) | |
bias = torch.zeros([out_channels]) if bias else None | |
if trainable: | |
self.weight = torch.nn.Parameter(weight) | |
self.bias = torch.nn.Parameter(bias) if bias is not None else None | |
else: | |
self.register_buffer('weight', weight) | |
if bias is not None: | |
self.register_buffer('bias', bias) | |
else: | |
self.bias = None | |
def forward(self, x, gain=1): | |
w = self.weight * (self.weight_gain * self.lr_multiplier) | |
b = (self.bias.to(x.dtype) * self.lr_multiplier) if self.bias is not None else None | |
flip_weight = (self.up == 1) # slightly faster | |
x = conv2d_resample.conv2d_resample(x=x, w=w.to(x.dtype), f=self.resample_filter, up=self.up, down=self.down, padding=self.padding, flip_weight=flip_weight) | |
act_gain = self.act_gain * gain | |
act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None | |
x = bias_act.bias_act(x, b, act=self.activation, gain=act_gain, clamp=act_clamp) | |
if self.instance_norm: | |
x = (x - x.mean(dim=(2,3), keepdim=True)) / (x.std(dim=(2,3), keepdim=True) + 1e-8) # [batch_size, c, h, w] | |
return x | |
#---------------------------------------------------------------------------- | |
class GenInput(nn.Module): | |
def __init__(self, cfg: DictConfig, channel_dim: int, motion_v_dim: int=None): | |
super().__init__() | |
self.cfg = cfg | |
if self.cfg.input.type == 'const': | |
self.input = torch.nn.Parameter(torch.randn([channel_dim, 4, 4])) | |
self.total_dim = channel_dim | |
elif self.cfg.input.type == 'temporal': | |
self.input = TemporalInput(self.cfg, channel_dim, motion_v_dim=motion_v_dim) | |
self.total_dim = self.input.get_dim() | |
else: | |
raise NotImplementedError(f'Unkown input type: {self.cfg.input.type}') | |
def forward(self, batch_size: int, motion_v: Optional[torch.Tensor]=None, dtype=None, memory_format=None) -> torch.Tensor: | |
if self.cfg.input.type == 'const': | |
x = self.input.to(dtype=dtype, memory_format=memory_format) | |
x = x.unsqueeze(0).repeat([batch_size, 1, 1, 1]) | |
elif self.cfg.input.type == 'temporal': | |
x = self.input(motion_v=motion_v) # [batch_size, d, h, w] | |
else: | |
raise NotImplementedError(f'Unkown input type: {self.cfg.input.type}') | |
return x | |
#---------------------------------------------------------------------------- | |
class TemporalInput(nn.Module): | |
def __init__(self, cfg: DictConfig, channel_dim: int, motion_v_dim: int): | |
super().__init__() | |
self.cfg = cfg | |
self.motion_v_dim = motion_v_dim | |
self.const = nn.Parameter(torch.randn(1, channel_dim, 4, 4)) | |
def get_dim(self): | |
return self.motion_v_dim + self.const.shape[1] | |
def forward(self, motion_v: torch.Tensor) -> torch.Tensor: | |
""" | |
motion_v: [batch_size, motion_v_dim] | |
""" | |
out = torch.cat([ | |
self.const.repeat(len(motion_v), 1, 1, 1), | |
motion_v.unsqueeze(2).unsqueeze(3).repeat(1, 1, *self.const.shape[2:]), | |
], dim=1) # [batch_size, channel_dim + num_fourier_feats * 2] | |
return out | |
#---------------------------------------------------------------------------- | |
class TemporalDifferenceEncoder(nn.Module): | |
def __init__(self, cfg: DictConfig): | |
super().__init__() | |
self.cfg = cfg | |
if self.cfg.sampling.num_frames_per_video > 1: | |
self.d = 256 | |
self.const_embed = nn.Embedding(self.cfg.sampling.max_num_frames, self.d) | |
self.time_encoder = FixedTimeEncoder( | |
self.cfg.sampling.max_num_frames, | |
skip_small_t_freqs=self.cfg.get('skip_small_t_freqs', 0)) | |
def get_dim(self) -> int: | |
if self.cfg.sampling.num_frames_per_video == 1: | |
return 1 | |
else: | |
if self.cfg.sampling.type == 'uniform': | |
return self.d + self.time_encoder.get_dim() | |
else: | |
return (self.d + self.time_encoder.get_dim()) * (self.cfg.sampling.num_frames_per_video - 1) | |
def forward(self, t: torch.Tensor) -> torch.Tensor: | |
misc.assert_shape(t, [None, self.cfg.sampling.num_frames_per_video]) | |
batch_size = t.shape[0] | |
if self.cfg.sampling.num_frames_per_video == 1: | |
out = torch.zeros(len(t), 1, device=t.device) | |
else: | |
if self.cfg.sampling.type == 'uniform': | |
num_diffs_to_use = 1 | |
t_diffs = t[:, 1] - t[:, 0] # [batch_size] | |
else: | |
num_diffs_to_use = self.cfg.sampling.num_frames_per_video - 1 | |
t_diffs = (t[:, 1:] - t[:, :-1]).view(-1) # [batch_size * (num_frames - 1)] | |
# Note: float => round => long is necessary when it's originally long | |
const_embs = self.const_embed(t_diffs.float().round().long()) # [batch_size * num_diffs_to_use, d] | |
fourier_embs = self.time_encoder(t_diffs.unsqueeze(1)) # [batch_size * num_diffs_to_use, num_fourier_feats] | |
out = torch.cat([const_embs, fourier_embs], dim=1) # [batch_size * num_diffs_to_use, d + num_fourier_feats] | |
out = out.view(batch_size, num_diffs_to_use, -1).view(batch_size, -1) # [batch_size, num_diffs_to_use * (d + num_fourier_feats)] | |
return out | |
#---------------------------------------------------------------------------- | |
class FixedTimeEncoder(nn.Module): | |
def __init__(self, | |
max_num_frames: int, # Maximum T size | |
skip_small_t_freqs: int=0, # How many high frequencies we should skip | |
): | |
super().__init__() | |
assert max_num_frames >= 1, f"Wrong max_num_frames: {max_num_frames}" | |
fourier_coefs = construct_log_spaced_freqs(max_num_frames, skip_small_t_freqs=skip_small_t_freqs) | |
self.register_buffer('fourier_coefs', fourier_coefs) # [1, num_fourier_feats] | |
def get_dim(self) -> int: | |
return self.fourier_coefs.shape[1] * 2 | |
def forward(self, t: torch.Tensor) -> torch.Tensor: | |
assert t.ndim == 2, f"Wrong shape: {t.shape}" | |
t = t.view(-1).float() # [batch_size * num_frames] | |
fourier_raw_embs = self.fourier_coefs * t.unsqueeze(1) # [bf, num_fourier_feats] | |
fourier_embs = torch.cat([ | |
fourier_raw_embs.sin(), | |
fourier_raw_embs.cos(), | |
], dim=1) # [bf, num_fourier_feats * 2] | |
return fourier_embs | |
#---------------------------------------------------------------------------- | |
class EqLRConv1d(nn.Module): | |
def __init__(self, | |
in_features: int, | |
out_features: int, | |
kernel_size: int, | |
padding: int=0, | |
stride: int=1, | |
activation: str='linear', | |
lr_multiplier: float=1.0, | |
bias=True, | |
bias_init=0.0, | |
): | |
super().__init__() | |
self.activation = activation | |
self.weight = torch.nn.Parameter(torch.randn([out_features, in_features, kernel_size]) / lr_multiplier) | |
self.bias = torch.nn.Parameter(torch.full([out_features], float(bias_init))) if bias else None | |
self.weight_gain = lr_multiplier / np.sqrt(in_features * kernel_size) | |
self.bias_gain = lr_multiplier | |
self.padding = padding | |
self.stride = stride | |
assert self.activation in ['lrelu', 'linear'] | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
assert x.ndim == 3, f"Wrong shape: {x.shape}" | |
w = self.weight.to(x.dtype) * self.weight_gain # [out_features, in_features, kernel_size] | |
b = self.bias # [out_features] | |
if b is not None: | |
b = b.to(x.dtype) | |
if self.bias_gain != 1: | |
b = b * self.bias_gain | |
y = F.conv1d(input=x, weight=w, bias=b, stride=self.stride, padding=self.padding) # [batch_size, out_features, out_len] | |
if self.activation == 'linear': | |
pass | |
elif self.activation == 'lrelu': | |
y = F.leaky_relu(y, negative_slope=0.2) # [batch_size, out_features, out_len] | |
else: | |
raise NotImplementedError | |
return y | |
#---------------------------------------------------------------------------- | |
def sample_frames(cfg: Dict, total_video_len: int, **kwargs) -> np.ndarray: | |
if cfg['type'] == 'random': | |
return random_frame_sampling(cfg, total_video_len, **kwargs) | |
elif cfg['type'] == 'uniform': | |
return uniform_frame_sampling(cfg, total_video_len, **kwargs) | |
else: | |
raise NotImplementedError | |
#---------------------------------------------------------------------------- | |
def random_frame_sampling(cfg: Dict, total_video_len: int, use_fractional_t: bool=False) -> np.ndarray: | |
min_time_diff = cfg["num_frames_per_video"] - 1 | |
max_time_diff = min(total_video_len - 1, cfg.get('max_dist', float('inf'))) | |
if type(cfg.get('total_dists')) in (list, tuple): | |
time_diff_range = [d for d in cfg['total_dists'] if min_time_diff <= d <= max_time_diff] | |
else: | |
time_diff_range = range(min_time_diff, max_time_diff) | |
time_diff: int = random.choice(time_diff_range) | |
if use_fractional_t: | |
offset = random.random() * (total_video_len - time_diff - 1) | |
else: | |
offset = random.randint(0, total_video_len - time_diff - 1) | |
frames_idx = [offset] | |
if cfg["num_frames_per_video"] > 1: | |
frames_idx.append(offset + time_diff) | |
if cfg["num_frames_per_video"] > 2: | |
frames_idx.extend([(offset + t) for t in random.sample(range(1, time_diff), k=cfg["num_frames_per_video"] - 2)]) | |
frames_idx = sorted(frames_idx) | |
return np.array(frames_idx) | |
#---------------------------------------------------------------------------- | |
def uniform_frame_sampling(cfg: Dict, total_video_len: int, use_fractional_t: bool=False) -> np.ndarray: | |
# Step 1: Select the distance between frames | |
if type(cfg.get('dists_between_frames')) in (list, tuple): | |
valid_dists = [d for d in cfg['dists_between_frames'] if d <= ['max_dist_between_frames']] | |
valid_dists = [d for d in valid_dists if (d * cfg['num_frames_per_video'] - d + 1) <= total_video_len] | |
d = random.choice(valid_dists) | |
else: | |
max_dist = min(cfg.get('max_dist', float('inf')), total_video_len // cfg['num_frames_per_video']) | |
d = random.randint(1, max_dist) | |
d_total = d * cfg['num_frames_per_video'] - d + 1 | |
# Step 2: Sample. | |
if use_fractional_t: | |
offset = random.random() * (total_video_len - d_total) | |
else: | |
offset = random.randint(0, total_video_len - d_total) | |
frames_idx = offset + np.arange(cfg['num_frames_per_video']) * d | |
return frames_idx | |
#---------------------------------------------------------------------------- | |
def construct_log_spaced_freqs(max_num_frames: int, skip_small_t_freqs: int=0) -> Tuple[int, torch.Tensor]: | |
time_resolution = 2 ** np.ceil(np.log2(max_num_frames)) | |
num_fourier_feats = np.ceil(np.log2(time_resolution)).astype(int) | |
powers = torch.tensor([2]).repeat(num_fourier_feats).pow(torch.arange(num_fourier_feats)) # [num_fourier_feats] | |
powers = powers[:len(powers) - skip_small_t_freqs] # [num_fourier_feats] | |
fourier_coefs = powers.unsqueeze(0).float() * np.pi # [1, num_fourier_feats] | |
return fourier_coefs / time_resolution | |
#---------------------------------------------------------------------------- | |