Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,184 Bytes
be791d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
import gradio as gr
import os
import torch
import argparse
import torchvision
from pipelines.pipeline_videogen import VideoGenPipeline
from diffusers.schedulers import DDIMScheduler
from diffusers.models import AutoencoderKL
from diffusers.models import AutoencoderKLTemporalDecoder
from transformers import CLIPTokenizer, CLIPTextModel
from omegaconf import OmegaConf
import os, sys
sys.path.append(os.path.split(sys.path[0])[0])
from models import get_models
import imageio
from PIL import Image
import numpy as np
from datasets import video_transforms
from torchvision import transforms
from einops import rearrange, repeat
from utils import dct_low_pass_filter, exchanged_mixed_dct_freq
from copy import deepcopy
import spaces
import requests
from datetime import datetime
import random
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/sample.yaml")
args = parser.parse_args()
args = OmegaConf.load(args.config)
torch.set_grad_enabled(False)
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 # torch.float16
unet = get_models(args).to(device, dtype=dtype)
if args.enable_vae_temporal_decoder:
if args.use_dct:
vae_for_base_content = AutoencoderKLTemporalDecoder.from_pretrained(args.pretrained_model_path, subfolder="vae_temporal_decoder", torch_dtype=torch.float64).to(device)
else:
vae_for_base_content = AutoencoderKLTemporalDecoder.from_pretrained(args.pretrained_model_path, subfolder="vae_temporal_decoder", torch_dtype=torch.float16).to(device)
vae = deepcopy(vae_for_base_content).to(dtype=dtype)
else:
vae_for_base_content = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae",).to(device, dtype=torch.float64)
vae = deepcopy(vae_for_base_content).to(dtype=dtype)
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_path, subfolder="text_encoder", torch_dtype=dtype).to(device) # huge
# set eval mode
unet.eval()
vae.eval()
text_encoder.eval()
basedir = os.getcwd()
savedir = os.path.join(basedir, "samples/Gradio", datetime.now().strftime("%Y-%m-%dT%H-%M-%S"))
savedir_sample = os.path.join(savedir, "sample")
os.makedirs(savedir, exist_ok=True)
def update_and_resize_image(input_image_path, height_slider, width_slider):
if input_image_path.startswith("http://") or input_image_path.startswith("https://"):
pil_image = Image.open(requests.get(input_image_path, stream=True).raw).convert('RGB')
else:
pil_image = Image.open(input_image_path).convert('RGB')
original_width, original_height = pil_image.size
if original_height == height_slider and original_width == width_slider:
return gr.Image(value=np.array(pil_image))
ratio1 = height_slider / original_height
ratio2 = width_slider / original_width
if ratio1 > ratio2:
new_width = int(original_width * ratio1)
new_height = int(original_height * ratio1)
else:
new_width = int(original_width * ratio2)
new_height = int(original_height * ratio2)
pil_image = pil_image.resize((new_width, new_height), Image.LANCZOS)
left = (new_width - width_slider) / 2
top = (new_height - height_slider) / 2
right = left + width_slider
bottom = top + height_slider
pil_image = pil_image.crop((left, top, right, bottom))
return gr.Image(value=np.array(pil_image))
def update_textbox_and_save_image(input_image, height_slider, width_slider):
pil_image = Image.fromarray(input_image.astype(np.uint8)).convert("RGB")
original_width, original_height = pil_image.size
ratio1 = height_slider / original_height
ratio2 = width_slider / original_width
if ratio1 > ratio2:
new_width = int(original_width * ratio1)
new_height = int(original_height * ratio1)
else:
new_width = int(original_width * ratio2)
new_height = int(original_height * ratio2)
pil_image = pil_image.resize((new_width, new_height), Image.LANCZOS)
left = (new_width - width_slider) / 2
top = (new_height - height_slider) / 2
right = left + width_slider
bottom = top + height_slider
pil_image = pil_image.crop((left, top, right, bottom))
img_path = os.path.join(savedir, "input_image.png")
pil_image.save(img_path)
return gr.Textbox(value=img_path), gr.Image(value=np.array(pil_image))
def prepare_image(image, vae, transform_video, device, dtype=torch.float16):
image = torch.as_tensor(np.array(image, dtype=np.uint8, copy=True)).unsqueeze(0).permute(0, 3, 1, 2)
image = transform_video(image)
image = vae.encode(image.to(dtype=dtype, device=device)).latent_dist.sample().mul_(vae.config.scaling_factor)
image = image.unsqueeze(2)
return image
@spaces.GPU
def gen_video(input_image, prompt, negative_prompt, diffusion_step, height, width, scfg_scale, use_dctinit, dct_coefficients, noise_level, motion_bucket_id, seed):
torch.manual_seed(seed)
scheduler = DDIMScheduler.from_pretrained(args.pretrained_model_path,
subfolder="scheduler",
beta_start=args.beta_start,
beta_end=args.beta_end,
beta_schedule=args.beta_schedule)
videogen_pipeline = VideoGenPipeline(vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
unet=unet).to(device)
# videogen_pipeline.enable_xformers_memory_efficient_attention()
transform_video = transforms.Compose([
video_transforms.ToTensorVideo(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
])
if args.use_dct:
base_content = prepare_image(input_image, vae_for_base_content, transform_video, device, dtype=torch.float64).to(device)
else:
base_content = prepare_image(input_image, vae_for_base_content, transform_video, device, dtype=torch.float16).to(device)
if use_dctinit:
# filter params
print("Using DCT!")
base_content_repeat = repeat(base_content, 'b c f h w -> b c (f r) h w', r=15).contiguous()
# define filter
freq_filter = dct_low_pass_filter(dct_coefficients=base_content, percentage=dct_coefficients)
noise = torch.randn(1, 4, 15, 40, 64).to(device)
# add noise to base_content
diffuse_timesteps = torch.full((1,),int(noise_level))
diffuse_timesteps = diffuse_timesteps.long()
# 3d content
base_content_noise = scheduler.add_noise(
original_samples=base_content_repeat.to(device),
noise=noise,
timesteps=diffuse_timesteps.to(device))
# 3d content
latents = exchanged_mixed_dct_freq(noise=noise,
base_content=base_content_noise,
LPF_3d=freq_filter).to(dtype=torch.float16)
base_content = base_content.to(dtype=torch.float16)
videos = videogen_pipeline(prompt,
negative_prompt=negative_prompt,
latents=latents if use_dctinit else None,
base_content=base_content,
video_length=15,
height=height,
width=width,
num_inference_steps=diffusion_step,
guidance_scale=scfg_scale,
motion_bucket_id=100-motion_bucket_id,
enable_vae_temporal_decoder=args.enable_vae_temporal_decoder).video
save_path = args.save_img_path + 'temp' + '.mp4'
# torchvision.io.write_video(save_path, videos[0], fps=8, video_codec='h264', options={'crf': '10'})
imageio.mimwrite(save_path, videos[0], fps=8, quality=7)
return save_path
if not os.path.exists(args.save_img_path):
os.makedirs(args.save_img_path)
with gr.Blocks() as demo:
gr.Markdown("<font color=red size=6.5><center>Cinemo: Consistent and Controllable Image Animation with Motion Diffusion Models</center></font>")
gr.Markdown(
"""<div style="display: flex;align-items: center;justify-content: center">
[<a href="https://arxiv.org/abs/2407.15642">Arxiv Report</a>] | [<a href="https://https://maxin-cn.github.io/cinemo_project/">Project Page</a>] | [<a href="https://github.com/maxin-cn/Cinemo">Github</a>]</div>
"""
)
with gr.Column(variant="panel"):
gr.Markdown(
"""
- Input image can be specified using the "Input Image URL" text box or uploaded by clicking or dragging the image to the "Input Image" box.
- Input image will be resized and/or center cropped to a given resolution (320 x 512) automatically.
- After setting the input image path, press the "Preview" button to visualize the resized input image.
"""
)
with gr.Row():
prompt_textbox = gr.Textbox(label="Prompt", lines=1)
negative_prompt_textbox = gr.Textbox(label="Negative prompt", lines=1)
with gr.Row(equal_height=False):
with gr.Column():
with gr.Row():
sample_step_slider = gr.Slider(label="Sampling steps", value=50, minimum=10, maximum=250, step=1)
with gr.Row():
seed_textbox = gr.Slider(label="Seed", value=100, minimum=1, maximum=int(1e8), step=1, interactive=True)
# seed_textbox = gr.Textbox(label="Seed", value=100)
# seed_button = gr.Button(value="\U0001F3B2", elem_classes="toolbutton")
# seed_button.click(fn=lambda: gr.Textbox(value=random.randint(1, int(1e8))), inputs=[], outputs=[seed_textbox])
with gr.Row():
height = gr.Slider(label="Height", value=320, minimum=0, maximum=512, step=16, interactive=False)
width = gr.Slider(label="Width", value=512, minimum=0, maximum=512, step=16, interactive=False)
with gr.Row():
txt_cfg_scale = gr.Slider(label="CFG Scale", value=7.5, minimum=1.0, maximum=20.0, step=0.1, interactive=True)
motion_bucket_id = gr.Slider(label="Motion Intensity", value=10, minimum=1, maximum=20, step=1, interactive=True)
with gr.Row():
use_dctinit = gr.Checkbox(label="Enable DCTInit", value=True)
dct_coefficients = gr.Slider(label="DCT Coefficients", value=0.23, minimum=0, maximum=1, step=0.01, interactive=True)
noise_level = gr.Slider(label="Noise Level", value=985, minimum=1, maximum=999, step=1, interactive=True)
generate_button = gr.Button(value="Generate", variant='primary')
with gr.Column():
with gr.Row():
input_image_path = gr.Textbox(label="Input Image URL", lines=1, scale=10, info="Press Enter or the Preview button to confirm the input image.")
preview_button = gr.Button(value="Preview")
with gr.Row():
input_image = gr.Image(label="Input Image", interactive=True)
input_image.upload(fn=update_textbox_and_save_image, inputs=[input_image, height, width], outputs=[input_image_path, input_image])
result_video = gr.Video(label="Generated Animation", interactive=False, autoplay=True)
preview_button.click(fn=update_and_resize_image, inputs=[input_image_path, height, width], outputs=[input_image])
input_image_path.submit(fn=update_and_resize_image, inputs=[input_image_path, height, width], outputs=[input_image])
EXAMPLES = [
["./example/aircrafts_flying/0.jpg", "aircrafts flying", "", 50, 320, 512, 7.5, True, 0.23, 975, 10, 100],
["./example/fireworks/0.jpg", "fireworks", "", 50, 320, 512, 7.5, True, 0.23, 975, 10, 100],
["./example/flowers_swaying/0.jpg", "flowers swaying", "", 50, 320, 512, 7.5, True, 0.23, 975, 10, 100],
["./example/girl_walking_on_the_beach/0.jpg", "girl walking on the beach", "", 50, 320, 512, 7.5, True, 0.23, 985, 10, 200],
["./example/house_rotating/0.jpg", "house rotating", "", 50, 320, 512, 7.5, True, 0.23, 985, 10, 100],
["./example/people_runing/0.jpg", "people runing", "", 50, 320, 512, 7.5, True, 0.23, 975, 10, 100],
]
examples = gr.Examples(
examples = EXAMPLES,
fn = gen_video,
inputs=[input_image, prompt_textbox, negative_prompt_textbox, sample_step_slider, height, width, txt_cfg_scale, use_dctinit, dct_coefficients, noise_level, motion_bucket_id, seed_textbox],
outputs=[result_video],
# cache_examples=True,
cache_examples="lazy",
)
generate_button.click(
fn=gen_video,
inputs=[
input_image,
prompt_textbox,
negative_prompt_textbox,
sample_step_slider,
height,
width,
txt_cfg_scale,
use_dctinit,
dct_coefficients,
noise_level,
motion_bucket_id,
seed_textbox,
],
outputs=[result_video]
)
demo.launch(debug=False, share=True)
# demo.launch(server_name="0.0.0.0", server_port=10034, enable_queue=True)
|