Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 11,048 Bytes
d942a8d 54ae859 d942a8d 54ae859 d942a8d 54ae859 d942a8d 54ae859 d942a8d 54ae859 d942a8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
from pydantic import BaseModel
import numpy as np
import torch
from PIL import Image
from transformers import Idefics2ForConditionalGeneration, Idefics2Processor, PreTrainedModel, ProcessorMixin
from typing import Optional
import re
import logging
import pickle
from pathlib import Path
import numpy as np
from matplotlib import pyplot as plt
from sklearn.cluster import KMeans
from huggingface_hub import hf_hub_download
class BaseModelYamlJsonMixin:
"""
BaseModel with helper methods for loading and saving to yaml/json format.
"""
@classmethod
def from_yaml(cls, path: Path):
with open(path, "r", encoding="utf-8") as f:
return cls(**yaml.safe_load(f))
def to_yaml(self: BaseModel, path: Path):
with open(path, "w", encoding="utf-8") as f:
yaml.safe_dump(self.model_dump(), f)
@classmethod
def from_json(cls, path: Path):
with open(path, "r", encoding="utf-8") as f:
return cls.model_validate_json(f.read())
def to_json(self: BaseModel, path: Path, indent: int = 4, *args, **kwargs):
with open(path, "w", encoding="utf-8") as f:
f.write(self.model_dump_json(indent=indent, *args, **kwargs))
class BaseModelWithYamlJsonFromTo(BaseModel, BaseModelYamlJsonMixin):
pass
class Idefics2TrainAdditionalConfig(BaseModel):
"""
num_action_tokens (`int`, defaults to `32`):
Number of action tokens to add to the tokenizer vocabulary.
do_image_splitting (`bool`, *optional*, defaults to `False`):
Whether to split the image into a sequence 4 equal sub-images concatenated with the original image. That
strategy was first introduced in https://arxiv.org/abs/2311.06607.
lora_config (`dict`, defaults to recommended config from https://x.com/danielhanchen/status/1791900967472140583):
Configuration for the LoRA model. If it is `None`, the model will not use LoRA.
"""
# must be set to extend vocabulary of model + tokenizer
num_action_tokens: int = -1 # it will be overwritten by the processor_config.yml
# must be set to be used in pipeline
num_actions: int = -1 # it will be overwritten by the processor_config.yml
do_image_splitting: bool = True
freeze_original_vocab: bool = False
freeze_vision_model: bool = False
freeze_connector: bool = False
torch_dtype: str = "bfloat16"
lora_config: dict | None = dict(
r=256,
lora_alpha=512,
lora_dropout=0.1,
target_modules="all-linear",
use_rslora=True,
init_lora_weights="gaussian",
modules_to_save=["lm_head", "embed_tokens"],
)
model_name_or_path: str = "HuggingFaceM4/idefics2-8b"
class KMeansActionTokenizer():
def __init__(self, action_count: int = 128):
self.action_count = action_count
self.kmeans = KMeans(n_clusters=self.action_count, random_state=np.random.RandomState(seed=42))
@property
def token_count(self):
return self.action_count
@classmethod
def from_pretrained(cls, model_path: str | Path):
model_path = Path(model_path)
self = cls()
action_tokenizer_path = hf_hub_download(repo_id=str(model_path), filename="tokenizer.pkl")
with open(action_tokenizer_path, "rb") as file:
self.kmeans = pickle.load(file)
self.action_count = self.kmeans.n_clusters
# assert self.action_count == 32
return self
def save_pretrained(self, model_path: str | Path):
model_path = Path(model_path)
model_path.mkdir(exist_ok=True)
with open(model_path / "tokenizer.pkl", "wb") as file:
pickle.dump(self.kmeans, file)
def train(self, actions):
self.kmeans.fit(actions)
def tokenize(self, action, padding=False, max_length=-1, truncation=False):
# action: (K, 3) shape, adjusted delta_position and delta_yaw
return [i for i in self.kmeans.predict(action)]
def detokenize(self, tokens):
# Token Check
check = np.asarray(tokens)
in_valid_range = (0 <= check) & (check < self.action_count)
if not in_valid_range.all():
logging.warning(f"Invalid tokens occur: {tokens}")
# If error occurs, return stop action.
return np.asarray([[0.0, 0.0, 0.0] for _ in range(len(tokens))])
return np.asarray([self.kmeans.cluster_centers_[t] for t in tokens])
def visualize(self, figset=None):
if figset is None:
fig, axes = plt.subplots(nrows=2, ncols=1, figsize=(12, 16), dpi=300)
else:
fig, axes = figset
FONT = {"fontsize": 20}
axes[0].set_title("Center", fontdict=FONT)
axes[1].set_title("Center_Rot", fontdict=FONT)
labels = self.kmeans.labels_
centers = self.kmeans.cluster_centers_
# plot center. each center is given as (x, y, yaw). plot point (x,y) and arrow from (x,y) to p', with direction of yaw. consider (x, y)'s scale
scale_factor = 0.05
for i, center in enumerate(centers):
x, y, yaw = center
axes[0].plot(x, y, "ro")
axes[0].arrow(
x,
y,
np.cos(yaw) * scale_factor,
np.sin(yaw) * scale_factor,
head_width=scale_factor * 0.3,
head_length=scale_factor * 0.3,
fc="k",
ec="k",
)
axes[0].text(x, y, f"{i}", fontsize=10)
axes[0].axis("equal")
axes[0].grid(True)
# filter centers that are not far from origin in distance 0.3
_centers = centers[np.linalg.norm(centers[:, :2], axis=1) < 0.05]
# print(f"action near zero: {_centers}")
scale_factor = 0.1
for center in _centers:
x, y, yaw = center
axes[1].plot(x, y, "ro")
axes[1].arrow(
x,
y,
np.cos(yaw) * scale_factor,
np.sin(yaw) * scale_factor,
head_width=scale_factor * 0.3,
head_length=scale_factor * 0.3,
fc="k",
ec="k",
)
axes[1].axis("equal")
axes[1].grid(True)
return fig, axes
class Idefics2PipelineConfig(BaseModelWithYamlJsonFromTo):
pipeline_class: str = "Idefics2Pipeline"
train_additional_cfg: Idefics2TrainAdditionalConfig
class Idefics2Pipeline():
def __init__(
self,
model: PreTrainedModel,
processor: ProcessorMixin,
action_tokenizer: KMeansActionTokenizer,
config: Idefics2PipelineConfig,
):
self.model = model
self.processor = processor
self.action_tokenizer = action_tokenizer
self.config = config
def save_pretrained(
self,
save_directory: str,
):
if not isinstance(save_directory, Path):
save_directory = Path(save_directory)
self.model.save_pretrained(save_directory)
self.processor.save_pretrained(save_directory)
self.action_tokenizer.save_pretrained(save_directory)
self.config.to_json(f"{save_directory}/pipeline_config.json")
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: str):
pipeline_config_path = hf_hub_download(repo_id=pretrained_model_name_or_path, filename="pipeline_config.json")
pipeline_config_path = Path(pipeline_config_path)
config = Idefics2PipelineConfig.model_validate_json(
(pipeline_config_path).read_text()
)
if not isinstance(pretrained_model_name_or_path, Path):
pretrained_model_name_or_path = Path(pretrained_model_name_or_path)
model = Idefics2ForConditionalGeneration.from_pretrained(pretrained_model_name_or_path)
processor = Idefics2Processor.from_pretrained(pretrained_model_name_or_path)
model.eval()
action_tokenizer = KMeansActionTokenizer.from_pretrained(pretrained_model_name_or_path)
return cls(model, processor, action_tokenizer, config)
def to(self, device):
return self.model.to(device)
@torch.no_grad()
def __call__(
self,
examples: list[dict],
return_traj: Optional[bool] = False,
):
"""
call model with examples
Args:
examples: list of example, [B, example]
return_traj: return trajectory if True
"""
raise NotImplementedError("Not implemented yet")
# same as idefics2 data collator
texts = []
images = []
for example in examples:
image = example["images"]
messages = example["messages"]
text = self.processor.apply_chat_template(messages, add_generation_prompt=False)
texts.append(text.strip())
images.append(image)
inputs = self.processor(text=texts, images=images, return_tensors="pt", padding=True)
generate_ids = self.model.generate(**inputs, max_new_tokens=self.config.num_actions)
generated_text = self.processor.batch_decode(generate_ids, skip_special_tokens=True)
if return_traj:
return self.action_tokenizer.detokenize(generated_text)
else:
return generated_text
@torch.no_grad()
def __call__(
self,
message_list: list[list[dict]],
images_list: list[list[Image.Image]],
return_traj: Optional[bool] = False,
):
"""
call model with message and images
Args:
message_list: list of messages, [B, messages]
images_list: list of images, [B, images]
return_traj: return trajectory if True
"""
# we don't use batch inference for run model worker
if len(message_list) != 1:
raise ValueError("No batch api call allowed for Idefics2Pipeline")
message = message_list[0]
images = images_list[0]
prompt = self.processor.apply_chat_template(message, add_generation_prompt=True)
prompt.replace("<end_of_utterance>", "")
# add space to match the training data
prompt = prompt + " "
inputs = self.processor(text=prompt, images=images, return_tensors="pt", padding=True)
device = self.model.device
inputs = {k: v.to(device) for k, v in inputs.items()}
generate_ids = self.model.generate(
**inputs, max_new_tokens=self.config.train_additional_cfg.num_actions, top_k=1
)
generated_texts = self.processor.batch_decode(generate_ids, skip_special_tokens=True)
if return_traj:
pred_action = re.findall(r"<ACTION_(\d+)>", generated_texts[0])
# pred_action = pred_action if len(pred_action) == self.config.num_actions else [-1] * self.config.num_actions
pred_action = np.array(pred_action, dtype=np.int64)
return self.action_tokenizer.detokenize(pred_action).tolist()
else:
return generated_texts |