mattritchey's picture
Update app.py
657cbfc
raw
history blame
4.03 kB
# -*- coding: utf-8 -*-
"""
Created on Thu Jun 8 03:39:02 2023
@author: mritchey
"""
import pandas as pd
import numpy as np
import streamlit as st
from geopy.extra.rate_limiter import RateLimiter
from geopy.geocoders import Nominatim
import folium
from streamlit_folium import st_folium
from vincenty import vincenty
st.set_page_config(layout="wide")
@st.cache_data
def convert_df(df):
return df.to_csv(index=0).encode('utf-8')
@st.cache_data
def get_data(file='hail2010-20230920_significant_bulk_all.parquet'):
return pd.read_parquet(file)
def map_perimeters(address,lat ,lon):
m = folium.Map(location=[lat, lon],
zoom_start=6,
height=400)
folium.Marker(
location=[lat, lon],
tooltip=f'Address: {address}',
).add_to(m)
return m
def distance(x):
left_coords = (x[0], x[1])
right_coords = (x[2], x[3])
return vincenty(left_coords, right_coords, miles=True)
def geocode(address):
try:
address2 = address.replace(' ', '+').replace(',', '%2C')
df = pd.read_json(
f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
results = df.iloc[:1, 0][0][0]['coordinates']
lat, lon = results['y'], results['x']
except:
geolocator = Nominatim(user_agent="GTA Lookup")
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
location = geolocator.geocode(address)
lat, lon = location.latitude, location.longitude
return lat, lon
#Side Bar
address = st.sidebar.text_input(
"Address", "Dallas, TX")
date = st.sidebar.date_input("Loss Date", pd.Timestamp(2023, 7, 14), key='date')
df_hail=get_data()
#Geocode Addreses
lat, lon = geocode(address)
#Filter DAta
df_hail_cut=df_hail.query(f"{lat}-1<=LAT<={lat}+1 and {lon}-1<=LON<={lon}+1 ")
df_hail_cut=df_hail_cut.query("Date_est<=@date")
df_hail_cut["Lat_address"] = lat
df_hail_cut["Lon_address"] = lon
df_hail_cut['Miles to Hail'] = [
distance(i) for i in df_hail_cut[['LAT','LON','Lat_address','Lon_address']].values]
df_hail_cut['MAXSIZE'] = df_hail_cut['MAXSIZE'].round(2)
df_hail_cut=df_hail_cut.query("`Miles to Hail`<10")
df_hail_cut['Category']=np.where(df_hail_cut['Miles to Hail']<.25,"At Location",
np.where(df_hail_cut['Miles to Hail']<1,"Within 1 Mile",
np.where(df_hail_cut['Miles to Hail']<3,"Within 3 Miles",
np.where(df_hail_cut['Miles to Hail']<10,"Within 10 Miles",'Other'))))
df_hail_cut_group=pd.pivot_table(df_hail_cut,index='Date_est',
columns='Category',
values='MAXSIZE',
aggfunc='max')
cols=df_hail_cut_group.columns
cols_focus=['At Location',"Within 1 Mile","Within 3 Miles","Within 10 Miles"]
missing_cols=set(cols_focus)-set(cols)
for c in missing_cols:
df_hail_cut_group[c]=np.nan
df_hail_cut_group2=df_hail_cut_group[cols_focus]
for i in range(3):
df_hail_cut_group2[cols_focus[i+1]] = np.where(df_hail_cut_group2[cols_focus[i+1]].fillna(0) <
df_hail_cut_group2[cols_focus[i]].fillna(0),
df_hail_cut_group2[cols_focus[i]],
df_hail_cut_group2[cols_focus[i+1]])
df_hail_cut_group2=df_hail_cut_group2.sort_index(ascending=False)
#Map Data
m = map_perimeters(address,lat, lon)
#Display
col1, col2 = st.columns((3, 2))
with col1:
st.header('Estimated Maximum Hail Size')
st.write('Data from 2010 to 2023-09-20')
df_hail_cut_group2
csv2 = convert_df(df_hail_cut_group2.reset_index())
st.download_button(
label="Download data as CSV",
data=csv2,
file_name=f'{address}_{date}.csv',
mime='text/csv')
with col2:
st.header('Map')
st_folium(m, height=400)