mattritchey commited on
Commit
81e5514
1 Parent(s): 7d56d7f

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +182 -0
  2. requirements.txt +9 -0
app.py ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """
3
+ Created on Thu Jun 8 03:39:02 2023
4
+
5
+ @author: mritchey
6
+ """
7
+ # streamlit run "hail all.py"
8
+
9
+ import pandas as pd
10
+ import numpy as np
11
+ import streamlit as st
12
+ from geopy.extra.rate_limiter import RateLimiter
13
+ from geopy.geocoders import Nominatim
14
+ import folium
15
+ from streamlit_folium import st_folium
16
+ from vincenty import vincenty
17
+ import duckdb
18
+ import os
19
+ import requests
20
+ import urllib
21
+
22
+ geocode_key=os.environ["geocode_key"]
23
+ st.set_page_config(layout="wide")
24
+
25
+
26
+ @st.cache_data
27
+ def convert_df(df):
28
+ return df.to_csv(index=0).encode('utf-8')
29
+
30
+
31
+ def duck_sql(sql_code):
32
+ con = duckdb.connect()
33
+ con.execute("PRAGMA threads=2")
34
+ con.execute("PRAGMA enable_object_cache")
35
+ return con.execute(sql_code).df()
36
+
37
+
38
+ def get_data(lat, lon, date_str):
39
+ code = f"""
40
+ select "#ZTIME" as "Date_utc", LON, LAT, MAXSIZE
41
+ from
42
+ 'data/*.parquet'
43
+ where LAT<={lat}+1 and LAT>={lat}-1
44
+ and LON<={lon}+1 and LON>={lon}-1
45
+ and "#ZTIME"<={date_str}
46
+
47
+ """
48
+ return duck_sql(code)
49
+
50
+
51
+ def map_location(address, lat, lon):
52
+
53
+ m = folium.Map(location=[lat, lon],
54
+
55
+ zoom_start=9,
56
+ height=400)
57
+ folium.Marker(
58
+ location=[lat, lon],
59
+ tooltip=f'Address: {address}',
60
+ ).add_to(m)
61
+
62
+ return m
63
+
64
+
65
+ def distance(x):
66
+ left_coords = (x[0], x[1])
67
+ right_coords = (x[2], x[3])
68
+ return vincenty(left_coords, right_coords, miles=True)
69
+
70
+
71
+ def geocode(address):
72
+ try:
73
+ try:
74
+ address2 = address.replace(' ', '+').replace(',', '%2C')
75
+ df = pd.read_json(
76
+ f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
77
+ results = df.iloc[:1, 0][0][0]['coordinates']
78
+ lat, lon = results['y'], results['x']
79
+ except:
80
+ geolocator = Nominatim(user_agent="GTA Lookup")
81
+ geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
82
+ location = geolocator.geocode(address)
83
+ lat, lon = location.latitude, location.longitude
84
+ except:
85
+ try:
86
+ address = urllib.parse.quote(address)
87
+ url = 'https://api.geocod.io/v1.7/geocode?q=+'+address+f'&api_key={geocode_key}'
88
+ json_reponse=requests.get(url,verify=False).json()
89
+ lat,lon = json_reponse['results'][0]['location'].values()
90
+ except:
91
+ st.header("Sorry...Did not Find Address. Try to Correct with Google or just use City, State & Zip.")
92
+ st.header("")
93
+ st.header("")
94
+ return lat, lon
95
+
96
+
97
+
98
+ #Side Bar
99
+ address = st.sidebar.text_input("Address", "Dallas, TX")
100
+ date = st.sidebar.date_input("Loss Date (Max)", pd.Timestamp(2024, 11, 20), key='date') # change here
101
+ show_data = st.sidebar.selectbox('Show Data At Least Within:', ('Show All', '1 Mile', '3 Miles', '5 Miles'))
102
+
103
+ #Geocode Addreses
104
+ date_str=date.strftime("%Y%m%d")
105
+
106
+ lat, lon = geocode(address)
107
+
108
+ #Filter Data
109
+ df_hail_cut = get_data(lat,lon, date_str)
110
+
111
+
112
+ df_hail_cut["Lat_address"] = lat
113
+ df_hail_cut["Lon_address"] = lon
114
+ df_hail_cut['Miles to Hail'] = [
115
+ distance(i) for i in df_hail_cut[['LAT', 'LON', 'Lat_address', 'Lon_address']].values]
116
+ df_hail_cut['MAXSIZE'] = df_hail_cut['MAXSIZE'].round(2)
117
+
118
+ df_hail_cut = df_hail_cut.query("`Miles to Hail`<10")
119
+ df_hail_cut['Category'] = np.where(df_hail_cut['Miles to Hail'] < 1, "Within 1 Mile",
120
+ np.where(df_hail_cut['Miles to Hail'] < 3, "Within 3 Miles",
121
+ np.where( df_hail_cut['Miles to Hail'] < 5, "Within 5 Miles",
122
+ np.where(df_hail_cut['Miles to Hail'] < 10, "Within 10 Miles", 'Other'))))
123
+
124
+ df_hail_cut_group = pd.pivot_table(df_hail_cut, index='Date_utc',
125
+ columns='Category',
126
+ values='MAXSIZE',
127
+ aggfunc='max')
128
+
129
+ cols = df_hail_cut_group.columns
130
+ cols_focus = [ "Within 1 Mile","Within 3 Miles",
131
+ "Within 5 Miles", "Within 10 Miles"]
132
+
133
+ missing_cols = set(cols_focus)-set(cols)
134
+ for c in missing_cols:
135
+ df_hail_cut_group[c] = np.nan
136
+
137
+ #Filter
138
+ df_hail_cut_group2 = df_hail_cut_group[cols_focus]
139
+
140
+ if show_data=='Show All':
141
+ pass
142
+ else:
143
+ df_hail_cut_group2 = df_hail_cut_group2.query(
144
+ f"`Within {show_data}`==`Within {show_data}`")
145
+
146
+ for i in range(len(cols_focus)-1):
147
+ df_hail_cut_group2[cols_focus[i+1]] = np.where(df_hail_cut_group2[cols_focus[i+1]].fillna(0) <
148
+ df_hail_cut_group2[cols_focus[i]].fillna(0),
149
+ df_hail_cut_group2[cols_focus[i]],
150
+ df_hail_cut_group2[cols_focus[i+1]])
151
+
152
+
153
+ df_hail_cut_group2 = df_hail_cut_group2.sort_index(ascending=False)
154
+
155
+ df_hail_cut_group2.index=pd.to_datetime(df_hail_cut_group2.index,format='%Y%m%d')
156
+ df_hail_cut_group2.index=df_hail_cut_group2.index.strftime("%Y-%m-%d")
157
+
158
+
159
+ #Map Data
160
+ m = map_location(address, lat, lon)
161
+
162
+ #Display
163
+ col1, col2 = st.columns((3, 2))
164
+
165
+ with col1:
166
+ st.header('Estimated Maximum Hail Size')
167
+ st.write('Data from 2010 to 2024-11-20') # change here
168
+ df_hail_cut_group2
169
+
170
+ data=df_hail_cut_group2.reset_index()
171
+ data['Address']=''
172
+ data.loc[0,'Address']=address
173
+ csv2 = convert_df(data)
174
+
175
+ st.download_button(
176
+ label="Download data as CSV",
177
+ data=csv2,
178
+ file_name=f'{address}_{date_str}.csv',
179
+ mime='text/csv')
180
+ with col2:
181
+ st.header('Map')
182
+ st_folium(m, height=400)
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ folium
2
+ geopy
3
+ numpy
4
+ pandas
5
+ streamlit
6
+ streamlit_folium
7
+ vincenty
8
+ duckdb
9
+ requests