mattritchey commited on
Commit
471dfc4
·
verified ·
1 Parent(s): ef532da

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +64 -64
main.py CHANGED
@@ -55,72 +55,72 @@ def get_data(address, start_date, end_date, radius_miles, get_max):
55
 
56
  # Convert Lat Lon to row & col on Array
57
  try:
58
- transform = pickle.load(open('apcp_hrrr_api/Data/hrrr_crs.pkl', 'rb'))
59
  row, col = rasterio.transform.rowcol(transform['affine'], lon, lat)
60
  except:
61
- transform =row=col=None
62
 
63
 
64
- # files = [
65
- # # 'Data/APCP_2024_hrrr_v2.h5',
66
- # 'Data/APCP_2020_hrrr_v3.h5',
67
- # 'Data/APCP_2021_hrrr_3.h5',
68
- # 'Data/APCP_2022_hrrr_v2.h5',
69
- # # 'Data/APCP_2023_hrrr_v2c.h5'
70
- # ]
71
-
72
- # files_choosen = [i for i in files if any(i for j in years if str(j) in i)]
73
-
74
-
75
- # # Query and Collect H5 Data
76
- # all_data = []
77
- # all_dates = []
78
- # for file in files_choosen:
79
- # with h5py.File(file, 'r') as f:
80
- # # Get Dates from H5
81
- # dates = f['date_time_hr'][:]
82
- # date_idx = np.where((dates >= int(start_date))
83
- # & (dates <= int(end_date)))[0]
84
-
85
- # # Select Data by Date and Radius
86
- # dates = dates[date_idx]
87
- # data = f['APCP'][date_idx, row-radius_miles:row +
88
- # radius_miles+1, col-radius_miles:col+radius_miles+1]
89
-
90
- # all_data.append(data)
91
- # all_dates.append(dates)
92
-
93
- # data_all = np.vstack(all_data)
94
- # dates_all = np.concatenate(all_dates)
95
-
96
- # # Convert to Inches
97
- # data_mat = np.where(data_all < 0, 0, data_all)*0.0393701
98
-
99
- # # Get Radius of Data
100
- # disk_mask = np.where(disk(radius_miles) == 1, True, False)
101
- # data_mat = np.where(disk_mask, data_mat, -1).round(3)
102
-
103
- # # Process to DataFrame
104
- # # Find Max of Data
105
- # if get_max == True:
106
- # data_max = np.max(data_mat, axis=(1, 2))
107
- # df_data = pd.DataFrame({'Date': dates_all,
108
- # 'APCP_max': data_max})
109
- # # Get all Data
110
- # else:
111
- # data_all = list(data_mat)
112
- # df_data = pd.DataFrame({'Date': dates_all,
113
- # 'APCP_all': data_all})
114
-
115
- # df_data['Date'] = pd.to_datetime(df_data['Date'], format='%Y%m%d%H')
116
- # df_data = df_data.set_index('Date')
117
-
118
- # df_data = df_data.reindex(date_range_days, fill_value=0).reset_index().rename(
119
- # columns={'index': 'Date'})
120
- # df_data['Date'] = df_data['Date'].dt.strftime('%Y-%m-%d:%H')
121
-
122
- # return df_data
123
- return lat, lon, transform, row, col
124
 
125
  @app.get('/APCP_Docker_Data')
126
  async def predict(address: str, start_date: str, end_date: str, radius_miles: int, get_max: bool):
@@ -131,6 +131,6 @@ async def predict(address: str, start_date: str, end_date: str, radius_miles: in
131
  except:
132
  results = pd.DataFrame({'Date': ['error'], 'APCP_max': ['error']})
133
 
134
- # return results.to_json()
135
- return results
136
 
 
55
 
56
  # Convert Lat Lon to row & col on Array
57
  try:
58
+ transform = pickle.load(open('Data/hrrr_crs.pkl', 'rb'))
59
  row, col = rasterio.transform.rowcol(transform['affine'], lon, lat)
60
  except:
61
+ row=col=1000
62
 
63
 
64
+ files = [
65
+ # 'Data/APCP_2024_hrrr_v2.h5',
66
+ 'Data/APCP_2020_hrrr_v3.h5',
67
+ 'Data/APCP_2021_hrrr_3.h5',
68
+ 'Data/APCP_2022_hrrr_v2.h5',
69
+ # 'Data/APCP_2023_hrrr_v2c.h5'
70
+ ]
71
+
72
+ files_choosen = [i for i in files if any(i for j in years if str(j) in i)]
73
+
74
+
75
+ # Query and Collect H5 Data
76
+ all_data = []
77
+ all_dates = []
78
+ for file in files_choosen:
79
+ with h5py.File(file, 'r') as f:
80
+ # Get Dates from H5
81
+ dates = f['date_time_hr'][:]
82
+ date_idx = np.where((dates >= int(start_date))
83
+ & (dates <= int(end_date)))[0]
84
+
85
+ # Select Data by Date and Radius
86
+ dates = dates[date_idx]
87
+ data = f['APCP'][date_idx, row-radius_miles:row +
88
+ radius_miles+1, col-radius_miles:col+radius_miles+1]
89
+
90
+ all_data.append(data)
91
+ all_dates.append(dates)
92
+
93
+ data_all = np.vstack(all_data)
94
+ dates_all = np.concatenate(all_dates)
95
+
96
+ # Convert to Inches
97
+ data_mat = np.where(data_all < 0, 0, data_all)*0.0393701
98
+
99
+ # Get Radius of Data
100
+ disk_mask = np.where(disk(radius_miles) == 1, True, False)
101
+ data_mat = np.where(disk_mask, data_mat, -1).round(3)
102
+
103
+ # Process to DataFrame
104
+ # Find Max of Data
105
+ if get_max == True:
106
+ data_max = np.max(data_mat, axis=(1, 2))
107
+ df_data = pd.DataFrame({'Date': dates_all,
108
+ 'APCP_max': data_max})
109
+ # Get all Data
110
+ else:
111
+ data_all = list(data_mat)
112
+ df_data = pd.DataFrame({'Date': dates_all,
113
+ 'APCP_all': data_all})
114
+
115
+ df_data['Date'] = pd.to_datetime(df_data['Date'], format='%Y%m%d%H')
116
+ df_data = df_data.set_index('Date')
117
+
118
+ df_data = df_data.reindex(date_range_days, fill_value=0).reset_index().rename(
119
+ columns={'index': 'Date'})
120
+ df_data['Date'] = df_data['Date'].dt.strftime('%Y-%m-%d:%H')
121
+
122
+ return df_data
123
+ # return lat, lon, transform, row, col
124
 
125
  @app.get('/APCP_Docker_Data')
126
  async def predict(address: str, start_date: str, end_date: str, radius_miles: int, get_max: bool):
 
131
  except:
132
  results = pd.DataFrame({'Date': ['error'], 'APCP_max': ['error']})
133
 
134
+ return results.to_json()
135
+ # return results
136