Spaces:
Sleeping
Sleeping
from fastapi import FastAPI | |
import uvicorn | |
import pandas as pd | |
import numpy as np | |
import pickle | |
import rasterio | |
import h5py | |
from skimage.morphology import disk | |
from geopy.extra.rate_limiter import RateLimiter | |
from geopy.geocoders import Nominatim | |
import pyproj | |
app = FastAPI() | |
#Endpoints | |
#Root endpoints | |
def root(): | |
return {"API": "ACPC HRRR"} | |
def lat_lon_to_row_col(lat, lon): | |
crs_dic = pickle.load(open('hrrr_crs.pkl', 'rb')) | |
lon_hrrr, lat_hrrr = crs_dic['proj_4326'].transform(lon, lat) | |
row, col = rasterio.transform.rowcol(crs_dic['affine'], lon_hrrr, lat_hrrr) | |
return int(row), int(col) | |
def geocode_address(address): | |
try: | |
address2 = address.replace(' ', '+').replace(',', '%2C') | |
df = pd.read_json( | |
f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json') | |
results = df.iloc[:1, 0][0][0]['coordinates'] | |
lat, lon = results['y'], results['x'] | |
except: | |
geolocator = Nominatim(user_agent='GTA Lookup') | |
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=2) | |
location = geolocator.geocode(address) | |
lat, lon = location.latitude, location.longitude | |
return lat, lon | |
def get_data(address, start_date, end_date, radius_miles, get_max): | |
start_date = pd.Timestamp(str(start_date)).strftime('%Y%m%d%H') | |
end_date = pd.Timestamp(str(end_date)).strftime('%Y%m%d%H') | |
date_years = pd.date_range(start=start_date[:-2], end=end_date[:-2], freq='M') | |
date_range_days = pd.date_range(start_date[:-2], end_date[:-2], freq='H') | |
years = list(set([d.year for d in date_years])) | |
if len(years) == 0: | |
years = [pd.Timestamp(start_date).year] | |
# Geocode Address | |
lat, lon= geocode_address(address) | |
# Convert Lat Lon to row & col on Array | |
row, col = lat_lon_to_row_col(lat, lon) | |
files = [ | |
# 'Data/APCP_2024_hrrr_v2.h5', | |
'Data/APCP_2020_hrrr_v3.h5', | |
'Data/APCP_2021_hrrr_3.h5', | |
'Data/APCP_2022_hrrr_v2.h5', | |
# 'Data/APCP_2023_hrrr_v2c.h5' | |
] | |
files_choosen = [i for i in files if any(i for j in years if str(j) in i)] | |
# Query and Collect H5 Data | |
all_data = [] | |
all_dates = [] | |
for file in files_choosen: | |
with h5py.File(file, 'r') as f: | |
# Get Dates from H5 | |
dates = f['date_time_hr'][:] | |
date_idx = np.where((dates >= int(start_date)) | |
& (dates <= int(end_date)))[0] | |
# Select Data by Date and Radius | |
dates = dates[date_idx] | |
data = f['APCP'][date_idx, row-radius_miles:row + | |
radius_miles+1, col-radius_miles:col+radius_miles+1] | |
all_data.append(data) | |
all_dates.append(dates) | |
data_all = np.vstack(all_data) | |
dates_all = np.concatenate(all_dates) | |
# Convert to Inches | |
data_mat = np.where(data_all < 0, 0, data_all)*0.0393701 | |
# Get Radius of Data | |
disk_mask = np.where(disk(radius_miles) == 1, True, False) | |
data_mat = np.where(disk_mask, data_mat, -1).round(3) | |
# Process to DataFrame | |
# Find Max of Data | |
if get_max == True: | |
data_max = np.max(data_mat, axis=(1, 2)) | |
df_data = pd.DataFrame({'Date': dates_all, | |
'APCP_max': data_max}) | |
# Get all Data | |
else: | |
data_all = list(data_mat) | |
df_data = pd.DataFrame({'Date': dates_all, | |
'APCP_all': data_all}) | |
df_data['Date'] = pd.to_datetime(df_data['Date'], format='%Y%m%d%H') | |
df_data = df_data.set_index('Date') | |
df_data = df_data.reindex(date_range_days, fill_value=0).reset_index().rename( | |
columns={'index': 'Date'}) | |
df_data['Date'] = df_data['Date'].dt.strftime('%Y-%m-%d:%H') | |
return df_data | |
# return lat, lon, row, col | |
async def predict(address: str, start_date: str, end_date: str, radius_miles: int, get_max: bool): | |
try: | |
results = get_data(address, start_date, | |
end_date, radius_miles, get_max) | |
except: | |
results = pd.DataFrame({'Date': ['error'], 'APCP_max': ['error']}) | |
return results.to_json() | |
# return results | |