File size: 9,607 Bytes
9a6c783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3aa2de
 
 
 
 
 
 
 
 
909b482
 
e3aa2de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a6c783
 
f56cdde
9a6c783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06329d8
9a6c783
 
 
06329d8
 
9a6c783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a7d116
 
 
 
9a6c783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3aa2de
3c1ab5c
df00985
24ff6f5
 
 
 
df00985
 
 
 
 
 
 
 
 
909b482
e3aa2de
 
 
 
df00985
24ff6f5
9a6c783
26dc9d7
 
 
 
 
b11de92
 
e3aa2de
 
b11de92
7bf668e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a6c783
1a7d116
9a6c783
 
 
 
7bf668e
 
 
 
 
 
 
 
 
 
9a6c783
 
 
 
 
 
 
2da403c
9a6c783
 
 
 
f56cdde
9a6c783
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

from branca.element import Template, MacroElement
from folium.raster_layers import ImageOverlay
import re
import glob
import altair as alt
import pickle
import h5py
import rasterio
import streamlit as st
import os
import branca.colormap as cm
import folium
import numpy as np
import pandas as pd
from geopy.extra.rate_limiter import RateLimiter
from geopy.geocoders import Nominatim

import warnings
warnings.filterwarnings("ignore")


@st.cache_data
def convert_df(df):
    return df.to_csv(index=0).encode('utf-8')


def geocode(address):
    try:
        address2 = address.replace(' ', '+').replace(',', '%2C')
        df = pd.read_json(
            f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
        results = df.iloc[:1, 0][0][0]['coordinates']
        lat, lon = results['y'], results['x']
    except:
        geolocator = Nominatim(user_agent="GTA Lookup")
        geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
        location = geolocator.geocode(address)
        lat, lon = location.latitude, location.longitude
    return pd.DataFrame({'Lat': lat, 'Lon': lon}, index=[0])


def get_data(row, col, radius=8):
    files = [
        "data/2023_hail.h5",
        "data/2022_hail.h5",
        "data/2021_hail.h5",
        "data/2020_hail.h5"
    ]
    all_data = []
    all_dates = []
    for i in files:
        with h5py.File(i, 'r') as f:
            data = f['hail'][:, row - radius: row + radius+ 1,   col-radius: col+radius+1]
            dates = f['dates'][:]
            all_data.append(data)
            all_dates.append(dates)

    data_mat = np.concatenate(all_data)
    data_mat = np.where(data_mat < 0, 0, data_mat)*0.0393701
    dates_mat = np.concatenate(all_dates)

    data_actual = [i[radius, radius] for i in data_mat]
    data_max = np.max(data_mat, axis=(1, 2))
    data_max_2 = np.max(data_mat, axis=0)

    df = pd.DataFrame({'Date': dates_mat,
                       'Actual': data_actual,
                      'Max': data_max})

    df['Date'] = pd.to_datetime(df['Date'], format='%Y%m%d')
    df['Date']=df['Date']+pd.Timedelta(days=1)

    return df, data_max_2


def map_folium(lat, lon,files_dates_selected, within_days ):
    
    # Create a base map
    m = folium.Map(location=[lat, lon], zoom_start=5)
    folium.Marker(location=[lat, lon], popup=address).add_to(m)
    
    # Define the image bounds (SW and NE corners)
    image_bounds  = [[20.0000010001429, -129.99999999985712], [54.9999999998571, -60.00000200014287]]
    
    # Add ImageOverlays for each image
    dates = []
    for f in files_dates_selected:
        overlay = ImageOverlay(image=f, bounds=image_bounds,
                               opacity=.75,
                               mercator_project=False)
        filename = os.path.basename(f)
        date_str = re.search(r'(\d{8})', filename).group()
        formatted_date = f"{date_str[:4]}-{date_str[4:6]}-{date_str[6:8]}"
        dates.append(formatted_date)
        overlay.add_to(m)
    

    # HTML template for the slider control with dates
    template_1 = '{% macro html(this, kwargs) %}' + f"""
    

    
    <div id="slider-control" style="position: fixed; top: 50px; left: 50px; z-index: 9999; background-color: white; padding: 10px; border-radius: 5px; box-shadow: 0px 0px 5px rgba(0, 0, 0, 0.3);">
        <label for="image-slider">Select Date:</label>
        <input type="range" min="0" max="{len(dates)-1}" value="{within_days}" class="slider" id="image-slider" style="width: 150px;" oninput="updateFromSlider(this.value)">
        <input type="text" id="date-input" placeholder="YYYY-MM-DD" oninput="updateFromInput(this.value)">
        <span id="slider-value">{dates[within_days]}</span>
    </div>
    <script>"""
    
    template_2 = f"""
    var dates = {dates};"""
    
    template_3 = """
    var currentIndex = 0;
    
    function updateImage(index) {
        index = Math.round(index);  // Ensure the index is an integer
        // Update the displayed date
        document.getElementById('slider-value').innerHTML = dates[index];
        document.getElementById('date-input').value = dates[index];
        
        // Hide all images
        document.querySelectorAll('.leaflet-image-layer').forEach(function(layer) {
            layer.style.display = 'none';
        });
        
        // Show the current image
        document.querySelectorAll('.leaflet-image-layer')[index].style.display = 'block';
        
        currentIndex = index;
    }
    
    function updateFromSlider(value) {
        updateImage(parseFloat(value));
    }
    
    function updateFromInput(inputDate) {
        var index = dates.indexOf(inputDate);
        if (index !== -1) {
            document.getElementById('image-slider').value = index;
            updateImage(index);
        } else {
            alert('Invalid date. Please enter a date in the format YYYY-MM-DD that exists in the dataset.');
        }
    }
    
    // Initially show only the first image
    document.addEventListener('DOMContentLoaded', function() {
        document.querySelectorAll('.leaflet-image-layer').forEach(function(layer, index) {
            layer.style.display = index === 0 ? 'block' : 'none';
        });
    });
    </script>
    {% endmacro %}
    """
    template = template_1+template_2+template_3
    
    
    # Add the custom control to the map
    macro = MacroElement()
    macro._template = Template(template)
    m.get_root().add_child(macro)
    
    
    colormap_hail = cm.LinearColormap(
        colors=['blue', 'lightblue', 'pink', 'red'], vmin=0.01, vmax=2)
    # Add the color legend to the map
    colormap_hail.caption = 'Legend: Hail (Inches)'
    colormap_hail.add_to(m)
    return m





#Set up 2 Columns
st.set_page_config(layout="wide")
col1, col2 = st.columns((2))


#Input Values
address = st.sidebar.text_input("Address", "123 Main Street, Dallas, TX 75126")
date_focus = st.sidebar.date_input("Date",  pd.Timestamp(2023, 7, 1))
within_days = st.sidebar.selectbox('Days Within', (30, 90))
# start_date = st.sidebar.date_input("Start Date",  pd.Timestamp(2023, 1, 1))
# end_date = st.sidebar.date_input("End Date",  pd.Timestamp(2023, 12, 31))

start_date = date_focus+pd.Timedelta(days=-within_days)
end_date = date_focus+pd.Timedelta(days=within_days)

date_range = pd.date_range(start=start_date, end=end_date).strftime('%Y%m%d')

circle_radius = st.sidebar.selectbox('Box Radius (Miles)', (5, 10, 25))

zoom_dic = {5: 12, 10: 11, 25: 10}
zoom = zoom_dic[circle_radius]

#Geocode and get Data
result = geocode(address)
lat, lon = result.values[0]


crs_dic = pickle.load(open('data/mrms_hail_crs.pkl', 'rb'))
transform = crs_dic['affine']

row, col = rasterio.transform.rowcol(transform, lon, lat)
row, col =int(row), int(col)
st.write(row,col)

# center=row,col
radius = int(np.ceil(circle_radius*1.6))
# crop_coords = col-radius, row-radius, col+radius+1, row+radius+1

files = [
    "data/2023_hail.h5",
    "data/2022_hail.h5",
    "data/2021_hail.h5",
    "data/2020_hail.h5"
]
all_data = []
all_dates = []
for i in files:
    with h5py.File(i, 'r') as f:
            data = f['hail'][:, row - radius: row + radius+ 1,   col-radius: col+radius+1]
            dates = f['dates'][:]
            all_data.append(data)
            all_dates.append(dates)



files = glob.glob(r'webp/**/*.webp', recursive=True)
files_dates_selected = [i for i in files if any(
    i for j in date_range if str(j) in re.search(r'(\d{8})', i).group())]




# Get Data
df_data, max_values = get_data(row, col, radius)

df_data = df_data.query(f"'{start_date}'<=Date<='{end_date}'")
df_data['Max'] = df_data['Max'].round(3)
df_data['Actual'] = df_data['Actual'].round(3)


# Create the bar chart
fig = alt.Chart(df_data).mark_bar(size=3, color='red').encode(
    x='Date:T',  # Temporal data type
    y='Actual:Q',  # Quantitative data type
    color='Actual:Q',  # Color based on Actual values
    tooltip=[  # Adding tooltips
        alt.Tooltip('Date:T', title='Date'),
        alt.Tooltip('Actual:Q', title='Actual Value'),
        alt.Tooltip('Max:Q', title=f'Max Value with {circle_radius} Miles')
    ]
).configure(
    view=alt.ViewConfig(
        strokeOpacity=0  # No border around the chart
    )
).configure_axis(
    grid=False  # Disable grid lines
).configure_legend(
    fillColor='transparent',  # Ensure no legend is shown
    strokeColor='transparent'
)




with col1:
    st.title(f'Hail')
    try:
        st.altair_chart(fig, use_container_width=True)
        csv = convert_df(df_data)
        st.download_button(
            label="Download data as CSV",
            data=csv,
            file_name='data.csv',
            mime='text/csv')
    except:
        pass


with col2:
    st.title('Hail Mesh')
    if 'is_first_run' not in st.session_state:
         # First run
         st.session_state.is_first_run = True
         st.components.v1.html(open("data/map.html", 'r').read(), height=500, width=500)
    else:
         with st.spinner("Loading... Please wait, it's gonna be great..."):
             # st_folium(m, height=500)
             # Not the first run; create a new map
             m=map_folium(lat, lon,files_dates_selected, within_days )
             m.save("map_new.html")
             st.components.v1.html(open("map_new.html", 'r').read(), height=500, width=500)

# st.bokeh_chart(hv.render(nice_plot*points_lat_lon, backend='bokeh'),use_container_width=True)


st.markdown(""" <style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style> """, unsafe_allow_html=True)