Spaces:
Running
Running
File size: 6,468 Bytes
dae43e8 9a6c783 dae43e8 9a6c783 fe784e6 e3aa2de dae43e8 e3aa2de 909b482 dae43e8 e3aa2de dae43e8 e3aa2de 9a6c783 fe784e6 dae43e8 9a6c783 dae43e8 9a6c783 dae43e8 9a6c783 dae43e8 9a6c783 dae43e8 9a6c783 1a7d116 9a6c783 dae43e8 9a6c783 f963f41 9a6c783 dae43e8 df00985 24ff6f5 b11de92 e3aa2de b11de92 7bf668e dae43e8 9a6c783 dae43e8 1a7d116 9a6c783 dae43e8 9a6c783 dae43e8 7bf668e dae43e8 7bf668e 9a6c783 dae43e8 9a6c783 dae43e8 9a6c783 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import plotly.graph_objects as go
from folium.raster_layers import ImageOverlay
import re
import glob
import pickle
import h5py
import rasterio
import streamlit as st
import branca.colormap as cm
import folium
import numpy as np
import pandas as pd
from geopy.extra.rate_limiter import RateLimiter
from geopy.geocoders import Nominatim
from streamlit_plotly_events import plotly_events
import warnings
warnings.filterwarnings("ignore")
@st.cache_data
def convert_df(df):
return df.to_csv(index=0).encode('utf-8')
def geocode(address):
try:
address2 = address.replace(' ', '+').replace(',', '%2C')
df = pd.read_json(
f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
results = df.iloc[:1, 0][0][0]['coordinates']
lat, lon = results['y'], results['x']
except:
geolocator = Nominatim(user_agent="GTA Lookup")
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
location = geolocator.geocode(address)
lat, lon = location.latitude, location.longitude
return pd.DataFrame({'Lat': lat, 'Lon': lon}, index=[0])
@st.cache_data
def get_data(row, col, radius=8):
files = [
"data/2023_hail.h5",
"data/2022_hail.h5",
"data/2021_hail.h5",
"data/2020_hail.h5"
]
all_data = []
all_dates = []
for i in files:
with h5py.File(i, 'r') as f:
data = f['hail'][:, row-radius:row +
radius+1, col-radius:col+radius+1]
dates = f['dates'][:]
all_data.append(data)
all_dates.append(dates)
data_mat = np.concatenate(all_data)
data_mat = np.where(data_mat < 0, 0, data_mat)*0.0393701
dates_mat = np.concatenate(all_dates)
data_actual = [i[radius, radius] for i in data_mat]
data_max = np.max(data_mat, axis=(1, 2))
data_max_2 = np.max(data_mat, axis=0)
df = pd.DataFrame({'Date': dates_mat,
'Actual': data_actual,
'Max': data_max})
df['Date'] = pd.to_datetime(df['Date'], format='%Y%m%d')
# df['Date']=df['Date']+pd.Timedelta(days=1)
return df, data_max_2
@st.cache_data
def map_folium(lat, lon, files_dates_selected):
# Create a base map
m = folium.Map(location=[lat, lon], zoom_start=6)
folium.Marker(location=[lat, lon], popup=address).add_to(m)
# Define the image bounds (SW and NE corners)
image_bounds = [[20.0000010001429, -129.99999999985712],
[54.9999999998571, -60.00000200014287]]
# Add ImageOverlays for each image
overlay = ImageOverlay(image=files_dates_selected, bounds=image_bounds,
opacity=.75,
mercator_project=False)
overlay.add_to(m)
colormap_hail = cm.LinearColormap(
colors=['blue', 'lightblue', 'pink', 'red'], vmin=0.01, vmax=2)
# Add the color legend to the map
colormap_hail.caption = 'Legend: Hail (Inches)'
colormap_hail.add_to(m)
return m
#Set up 2 Columns
st.set_page_config(layout="wide")
col1, col2 = st.columns((2))
#Input Values
address = st.sidebar.text_input("Address", "123 Main Street, Dallas, TX 75126")
date_focus = st.sidebar.date_input("Date", pd.Timestamp(2023, 7, 1))
within_days = st.sidebar.selectbox('Days Within', (90, 180, 365))
# start_date = st.sidebar.date_input("Start Date", pd.Timestamp(2023, 1, 1))
# end_date = st.sidebar.date_input("End Date", pd.Timestamp(2023, 12, 31))
start_date = date_focus+pd.Timedelta(days=-within_days)
end_date = date_focus+pd.Timedelta(days=within_days)
date_range = pd.date_range(start=start_date, end=end_date).strftime('%Y%m%d')
circle_radius = st.sidebar.selectbox('Box Radius (Miles)', (5, 10, 25))
#Geocode and get Data
result = geocode(address)
lat, lon = result.values[0]
crs_dic = pickle.load(open('data/mrms_hail_crs.pkl', 'rb'))
transform = crs_dic['affine']
row, col = rasterio.transform.rowcol(transform, lon, lat)
row, col = int(row), int(col)
radius = int(np.ceil(circle_radius*1.6))
# Get Data
df_data, max_values = get_data(row, col, radius)
df_data = df_data.query(f"'{start_date}'<=Date<='{end_date}'")
df_data['Max'] = df_data['Max'].round(3)
df_data['Actual'] = df_data['Actual'].round(3)
fig = go.Figure()
# Add bars for actual values
fig.add_trace(go.Bar(
x=df_data['Date'],
y=df_data['Actual'],
name='Actual Value',
marker_color='#2D5986',
hoverinfo='text', # Show text information only
text=df_data.apply(
lambda row: f'Date: {row["Date"].date()}<br>Hail: {row["Actual"]}<br>Max: {row["Max"]}', axis=1)
))
# Update layout
fig.update_layout(
title='',
xaxis_title='Date',
yaxis_title='Hail (Inches)',
barmode='group'
)
files = glob.glob(r'webp/**/*.webp', recursive=True)
with col1:
st.title('Hail')
try:
selected_points = plotly_events(fig)
csv = convert_df(df_data)
st.download_button(
label="Download data as CSV",
data=csv,
file_name='data.csv',
mime='text/csv')
except:
pass
with col2:
st.title('Hail Mesh')
if selected_points:
# Extract the details of the first selected point
selected_index = selected_points[0]['pointIndex']
selected_data = df_data.iloc[selected_index]
# # Display the selected point details
# st.write("You selected the following point:")
# st.write(selected_data)
files_dates_selected = [i for i in files if selected_data['Date'].strftime(
'%Y%m%d') in re.search(r'(\d{8})', i).group()][0]
m = map_folium(lat, lon, files_dates_selected)
m.save("map_new.html")
st.write('Date: ' + selected_data['Date'].strftime('%m-%d-%Y'))
st.components.v1.html(
open("map_new.html", 'r').read(), height=500, width=500)
else:
files_dates_selected = [i for i in files if date_focus.strftime(
'%Y%m%d') in re.search(r'(\d{8})', i).group()][0]
st.write('Date: ' + date_focus.strftime('%m-%d-%Y'))
m = map_folium(lat, lon, files_dates_selected)
m.save("map_new.html")
st.components.v1.html(
open("map_new.html", 'r').read(), height=500, width=500)
st.markdown(""" <style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style> """, unsafe_allow_html=True)
|