Spaces:
Running
Running
File size: 9,161 Bytes
9a6c783 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
from branca.element import Template, MacroElement
from folium.raster_layers import ImageOverlay
import re
import glob
import altair as alt
import pickle
import h5py
import rasterio
import streamlit as st
import os
import branca.colormap as cm
import folium
import numpy as np
import pandas as pd
from geopy.extra.rate_limiter import RateLimiter
from geopy.geocoders import Nominatim
import warnings
warnings.filterwarnings("ignore")
@st.cache_data
def convert_df(df):
return df.to_csv(index=0).encode('utf-8')
def geocode(address):
try:
address2 = address.replace(' ', '+').replace(',', '%2C')
df = pd.read_json(
f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
results = df.iloc[:1, 0][0][0]['coordinates']
lat, lon = results['y'], results['x']
except:
geolocator = Nominatim(user_agent="GTA Lookup")
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
location = geolocator.geocode(address)
lat, lon = location.latitude, location.longitude
return pd.DataFrame({'Lat': lat, 'Lon': lon}, index=[0])
def get_data(row, col, radius=8):
files = [
"data/2023_hail.h5",
"data/2022_hail.h5",
"data/2021_hail.h5",
"data/2020_hail.h5"
]
all_data = []
all_dates = []
for f in files:
with h5py.File(f, 'r') as f:
data = f['hail'][:, row-radius:row +
radius+1, col-radius:col+radius+1]
dates = f['dates'][:]
all_data.append(data)
all_dates.append(dates)
data_mat = np.concatenate(all_data)
data_mat = np.where(data_mat < 0, 0, data_mat)*0.0393701
dates_mat = np.concatenate(all_dates)
data_actual = [i[radius, radius] for i in data_mat]
data_max = np.max(data_mat, axis=(1, 2))
data_max_2 = np.max(data_mat, axis=0)
df = pd.DataFrame({'Date': dates_mat,
'Actual': data_actual,
'Max': data_max})
df['Date'] = pd.to_datetime(df['Date'], format='%Y%m%d')
df['Date']=df['Date']+pd.Timedelta(days=1)
return df, data_max_2
def map_folium(lat, lon,files_dates_selected ):
# Create a base map
m = folium.Map(location=[lat, lon], zoom_start=5)
folium.Marker(location=[lat, lon], popup=address).add_to(m)
# Define the image bounds (SW and NE corners)
image_bounds = [[20.0000010001429, -129.99999999985712], [54.9999999998571, -60.00000200014287]]
# Add ImageOverlays for each image
dates = []
for f in files_dates_selected:
overlay = ImageOverlay(image=f, bounds=image_bounds,
opacity=.75,
mercator_project=False)
filename = os.path.basename(f)
date_str = re.search(r'(\d{8})', filename).group()
formatted_date = f"{date_str[:4]}-{date_str[4:6]}-{date_str[6:8]}"
dates.append(formatted_date)
overlay.add_to(m)
# HTML template for the slider control with dates
template_1 = '{% macro html(this, kwargs) %}' + f"""
<div id="slider-control" style="position: fixed; top: 50px; left: 50px; z-index: 9999; background-color: white; padding: 10px; border-radius: 5px; box-shadow: 0px 0px 5px rgba(0, 0, 0, 0.3);">
<label for="image-slider">Select Date:</label>
<input type="range" min="0" max="{len(dates)-1}" value="{within_days}" class="slider" id="image-slider" style="width: 150px;" oninput="updateFromSlider(this.value)">
<input type="text" id="date-input" placeholder="YYYY-MM-DD" oninput="updateFromInput(this.value)">
<span id="slider-value">{dates[within_days]}</span>
</div>
<script>"""
template_2 = f"""
var dates = {dates};"""
template_3 = """
var currentIndex = 0;
function updateImage(index) {
index = Math.round(index); // Ensure the index is an integer
// Update the displayed date
document.getElementById('slider-value').innerHTML = dates[index];
document.getElementById('date-input').value = dates[index];
// Hide all images
document.querySelectorAll('.leaflet-image-layer').forEach(function(layer) {
layer.style.display = 'none';
});
// Show the current image
document.querySelectorAll('.leaflet-image-layer')[index].style.display = 'block';
currentIndex = index;
}
function updateFromSlider(value) {
updateImage(parseFloat(value));
}
function updateFromInput(inputDate) {
var index = dates.indexOf(inputDate);
if (index !== -1) {
document.getElementById('image-slider').value = index;
updateImage(index);
} else {
alert('Invalid date. Please enter a date in the format YYYY-MM-DD that exists in the dataset.');
}
}
// Initially show only the first image
document.addEventListener('DOMContentLoaded', function() {
document.querySelectorAll('.leaflet-image-layer').forEach(function(layer, index) {
layer.style.display = index === 0 ? 'block' : 'none';
});
});
</script>
{% endmacro %}
"""
template = template_1+template_2+template_3
# Add the custom control to the map
macro = MacroElement()
macro._template = Template(template)
m.get_root().add_child(macro)
colormap_hail = cm.LinearColormap(
colors=['blue', 'lightblue', 'pink', 'red'], vmin=0.01, vmax=2)
# Add the color legend to the map
colormap_hail.caption = 'Legend: Hail (Inches)'
colormap_hail.add_to(m)
return m
#Set up 2 Columns
st.set_page_config(layout="wide")
col1, col2 = st.columns((2))
#Input Values
address = st.sidebar.text_input("Address", "123 Main Street, Dallas, TX 75126")
date_focus = st.sidebar.date_input("Date", pd.Timestamp(2023, 7, 1))
within_days = st.sidebar.selectbox('Days Within', (30, 90))
# start_date = st.sidebar.date_input("Start Date", pd.Timestamp(2023, 1, 1))
# end_date = st.sidebar.date_input("End Date", pd.Timestamp(2023, 12, 31))
start_date = date_focus+pd.Timedelta(days=-within_days)
end_date = date_focus+pd.Timedelta(days=within_days)
date_range = pd.date_range(start=start_date, end=end_date).strftime('%Y%m%d')
circle_radius = st.sidebar.selectbox('Box Radius (Miles)', (5, 10, 25))
zoom_dic = {5: 12, 10: 11, 25: 10}
zoom = zoom_dic[circle_radius]
#Geocode and get Data
result = geocode(address)
lat, lon = result.values[0]
crs_dic = pickle.load(open('data/mrms_hail_crs.pkl', 'rb'))
transform = crs_dic['affine']
row, col = rasterio.transform.rowcol(transform, lon, lat)
# center=row,col
radius = int(np.ceil(circle_radius*1.6))
crop_coords = col-radius, row-radius, col+radius+1, row+radius+1
# Get Data
df_data, max_values = get_data(row, col, radius)
df_data = df_data.query(f"'{start_date}'<=Date<='{end_date}'")
df_data['Max'] = df_data['Max'].round(3)
df_data['Actual'] = df_data['Actual'].round(3)
# Create the bar chart
fig = alt.Chart(df_data).mark_bar(size=3, color='red').encode(
x='Date:T', # Temporal data type
y='Actual:Q', # Quantitative data type
color='Actual:Q', # Color based on Actual values
tooltip=[ # Adding tooltips
alt.Tooltip('Date:T', title='Date'),
alt.Tooltip('Actual:Q', title='Actual Value'),
alt.Tooltip('Max:Q', title=f'Max Value with {circle_radius} Miles')
]
).configure(
view=alt.ViewConfig(
strokeOpacity=0 # No border around the chart
)
).configure_axis(
grid=False # Disable grid lines
).configure_legend(
fillColor='transparent', # Ensure no legend is shown
strokeColor='transparent'
)
files = glob.glob(r'webp\**\*.webp', recursive=True)
files_dates_selected = [i for i in files if any(
i for j in date_range if str(j) in re.search(r'(\d{8})', i).group())]
with col1:
st.title(f'Hail')
try:
st.altair_chart(fig, use_container_width=True)
csv = convert_df(df_data)
st.download_button(
label="Download data as CSV",
data=csv,
file_name='data.csv',
mime='text/csv')
except:
pass
with col2:
st.title('Hail Mesh')
if 'is_first_run' not in st.session_state:
# First run
st.session_state.is_first_run = True
st.components.v1.html(open("map.html", 'r').read(), height=500, width=500)
else:
with st.spinner("Loading... Please wait, it's gonna be great..."):
# st_folium(m, height=500)
# Not the first run; create a new map
m=map_folium(lat, lon,files_dates_selected )
m.save("map_new.html")
st.components.v1.html(open("map_new.html", 'r').read(), height=500, width=500)
# st.bokeh_chart(hv.render(nice_plot*points_lat_lon, backend='bokeh'),use_container_width=True)
st.markdown(""" <style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style> """, unsafe_allow_html=True)
|