Spaces:
Sleeping
Sleeping
File size: 6,613 Bytes
9ec1981 7149684 9ec1981 7149684 e802586 7149684 50d74bb e802586 7149684 e802586 7149684 9ec1981 e802586 9ec1981 e802586 9ec1981 d4ff3d2 e802586 9ec1981 47a8e15 2f59867 47a8e15 9ec1981 e802586 ed2eee6 7149684 ab66ee6 7149684 e802586 969a87c 56aaa78 969a87c 50d74bb e1c3d93 9ec1981 50556fe 9ec1981 db19bb6 dacc493 884afb1 9ec1981 50d74bb 9ec1981 2cadcf7 9ec1981 e1c3d93 9ec1981 7149684 9ec1981 7149684 2c22b89 9ec1981 e802586 ed2eee6 884afb1 7149684 9ec1981 7149684 dacc493 7149684 9ec1981 50556fe 9ec1981 2cadcf7 9ec1981 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import streamlit as st
import pandas as pd
import numpy as np
import requests
from urllib.parse import urlparse, quote
import re
from bs4 import BeautifulSoup
import time
from joblib import Parallel, delayed
from nltk import ngrams
@st.cache_data
def convert_df(df):
return df.to_csv()
def normalize_string(string):
normalized_string = string.lower()
normalized_string = re.sub(r'[^\w\s]', '', normalized_string)
return normalized_string
def jaccard_similarity(string1, string2,n = 2, normalize=True):
try:
if normalize:
string1,string2= normalize_string(string1),normalize_string(string2)
grams1 = set(ngrams(string1, n))
grams2 = set(ngrams(string2, n))
similarity = len(grams1.intersection(grams2)) / len(grams1.union(grams2))
except:
similarity=0
if string2=='did not extract address':
similarity=0
return similarity
def jaccard_sim_split_word_number(string1,string2):
numbers1 = ' '.join(re.findall(r'\d+', string1))
words1 = ' '.join(re.findall(r'\b[A-Za-z]+\b', string1))
numbers2 = ' '.join(re.findall(r'\d+', string2))
words2 = ' '.join(re.findall(r'\b[A-Za-z]+\b', string2))
number_similarity=jaccard_similarity(numbers1,numbers2)
words_similarity=jaccard_similarity(words1,words2)
return (number_similarity+words_similarity)/2
def extract_website_domain(url):
parsed_url = urlparse(url)
return parsed_url.netloc
def google_address(address):
# address_number = re.findall(r'\b\d+\b', address)[0]
# address_zip =re.search(r'(\d{5})$', address).group()[:2]
search_query = quote(address)
url=f'https://www.google.com/search?q={search_query}'
response = requests.get(url)
soup = BeautifulSoup(response.content, "html.parser")
texts_links = []
for link in soup.find_all("a"):
t,l=link.get_text(), link.get("href")
if (l[:11]=='/url?q=http') and (len(t)>20 ):
texts_links.append((t,l))
text = soup.get_text()
texts_links_des=[]
for i,t_l in enumerate(texts_links):
start=text.find(texts_links[i][0][:50])
try:
end=text.find(texts_links[i+1][0][:50])
except:
end=text.find('Related searches')
description=text[start:end]
texts_links_des.append((t_l[0],t_l[1],description))
df=pd.DataFrame(texts_links_des,columns=['Title','Link','Description'])
df['Description']=df['Description'].bfill()
df['Address Output']=df['Title'].str.extract(r'(.+? \d{5})').fillna("**DID NOT EXTRACT ADDRESS**")
df['Link']=[i[7:i.find('&sa=')] for i in df['Link']]
df['Website'] = df['Link'].apply(extract_website_domain)
df['Square Footage']=df['Description'].str.extract(r"((\d+) Square Feet|(\d+) sq. ft.|(\d+) sqft|(\d+) Sq. Ft.|(\d+) sq|(\d+(?:,\d+)?) Sq\. Ft\.|(\d+(?:,\d+)?) sq)")[0]
try:
df['Square Footage']=df['Square Footage'].replace({',':''},regex=True).str.replace(r'\D', '')
except:
pass
df['Beds']=df['Description'].replace({'-':' ','total':''},regex=True).str.extract(r"(\d+) bed")
df['Baths']=df['Description'].replace({'-':' ','total':''},regex=True).str.extract(r"((\d+) bath|(\d+(?:\.\d+)?) bath)")[0]
df['Baths']=df['Baths'].str.extract(r'([\d.]+)').astype(float)
df['Year Built']=df['Description'].str.extract(r"built in (\d{4})")
df['Match Percent']=[jaccard_sim_split_word_number(address,i)*100 for i in df['Address Output']]
df['Google Search Result']=[*range(1,df.shape[0]+1)]
# df_final=df[df['Address Output'].notnull()]
# df_final=df_final[(df_final['Address Output'].str.contains(str(address_number))) & (df_final['Address Output'].str.contains(str(address_zip)))]
df.insert(0,'Address Input',address)
return df
def catch_errors(addresses):
try:
return google_address(addresses)
except:
return pd.DataFrame({'Address Input':[addresses]})
@st.cache_data
def process_multiple_address(addresses):
results=Parallel(n_jobs=32, prefer="threads")(delayed(catch_errors)(i) for i in addresses)
return results
st.set_page_config(layout="wide")
st.header("Google Data Scrap")
address = st.sidebar.text_input("Single Address:", "190 Pebble Creek Dr Etna, OH 43062")
uploaded_file = st.sidebar.file_uploader("Upload Multiple Addresses:")
return_top_1 = st.sidebar.radio('Return Only Top Results',('No', 'Yes'))
match_percent = st.sidebar.selectbox('Address Match Percentage At Least:',(70, 80, 90, 100, 0))
return_sq = st.sidebar.radio('Return Only Results with Square Footage',('No', 'Yes'))
if uploaded_file is not None:
try:
df = pd.read_csv(uploaded_file)
except:
try:
df = pd.read_excel(uploaded_file)
except:
df = pd.read_parquet(uploaded_file)
address_cols=list(df.columns[:4])
df[address_cols[-1]]=df[address_cols[-1]].astype(str).str[:5].astype(int).astype(str)
df[address_cols[-1]]=df[address_cols[-1]].apply(lambda x: x.zfill(5))
df['Address All']=df[address_cols[0]]+', '+df[address_cols[1]]+', '+df[address_cols[2]]+' '+df[address_cols[3]]
results= process_multiple_address(df['Address All'].values)
results=pd.concat(results).reset_index(drop=1)
# results.index=results.index+1
else:
results=google_address(address).reset_index(drop=1)
# results.index=results.index+1
results=results[['Address Input', 'Address Output','Match Percent','Website','Square Footage', 'Beds', 'Baths', 'Year Built',
'Link','Google Search Result', 'Description' ]]
results=results.query(f"`Match Percent`>={match_percent}")
if return_sq=='Yes':
results=results.query("`Square Footage`==`Square Footage`").reset_index(drop=1)
# results.index=results.index+1
if return_top_1=='Yes':
results=results.query("`Google Search Result`==1").reset_index(drop=1)
with st.container():
st.dataframe(
results,
column_config={
"Link": st.column_config.LinkColumn("Link"),
'Match Percent': st.column_config.NumberColumn(format='%.2f %%'),
},
hide_index=True,
# height=500,
# width=500,
)
csv2 = convert_df(results)
st.download_button(
label="Download Results as CSV",
data=csv2,
file_name=f'download_scrap.csv',
mime='text/csv')
st.markdown(""" <style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style> """, unsafe_allow_html=True) |