|
import streamlit as st |
|
from streamlit_drawable_canvas import st_canvas |
|
from PIL import Image |
|
from typing import Union |
|
import random |
|
import numpy as np |
|
import os |
|
import time |
|
|
|
from models import make_image_controlnet, make_inpainting |
|
from segmentation import segment_image |
|
from config import HEIGHT, WIDTH, POS_PROMPT, NEG_PROMPT, COLOR_MAPPING, map_colors, map_colors_rgb |
|
from palette import COLOR_MAPPING_CATEGORY |
|
from preprocessing import preprocess_seg_mask, get_image, get_mask |
|
from explanation import make_inpainting_explanation, make_regeneration_explanation, make_segmentation_explanation |
|
|
|
st.set_page_config(layout="wide") |
|
|
|
|
|
def on_upload() -> None: |
|
"""Upload image to the canvas.""" |
|
if 'input_image' in st.session_state and st.session_state['input_image'] is not None: |
|
image = Image.open(st.session_state['input_image']).convert('RGB') |
|
st.session_state['initial_image'] = image |
|
if 'seg' in st.session_state: |
|
del st.session_state['seg'] |
|
if 'unique_colors' in st.session_state: |
|
del st.session_state['unique_colors'] |
|
if 'output_image' in st.session_state: |
|
del st.session_state['output_image'] |
|
|
|
|
|
def check_reset_state() -> bool: |
|
"""Check whether the UI elements need to be reset |
|
Returns: |
|
bool: True if the UI elements need to be reset, False otherwise |
|
""" |
|
if ('reset_canvas' in st.session_state and st.session_state['reset_canvas']): |
|
st.session_state['reset_canvas'] = False |
|
return True |
|
st.session_state['reset_canvas'] = False |
|
return False |
|
|
|
|
|
def move_image(source: Union[str, Image.Image], |
|
dest: str, |
|
rerun: bool = True, |
|
remove_state: bool = True) -> None: |
|
"""Move image from source to destination. |
|
Args: |
|
source (Union[str, Image.Image]): source image |
|
dest (str): destination image location |
|
rerun (bool, optional): rerun streamlit. Defaults to True. |
|
remove_state (bool, optional): remove the canvas state. Defaults to True. |
|
""" |
|
source_image = source if isinstance(source, Image.Image) else st.session_state[source] |
|
|
|
if remove_state: |
|
st.session_state['reset_canvas'] = True |
|
if 'seg' in st.session_state: |
|
del st.session_state['seg'] |
|
if 'unique_colors' in st.session_state: |
|
del st.session_state['unique_colors'] |
|
|
|
st.session_state[dest] = source_image |
|
st.session_state['dest'] = source_image |
|
if rerun: |
|
st.experimental_rerun() |
|
|
|
|
|
def on_change_radio() -> None: |
|
"""Reset the UI elements when the radio button is changed.""" |
|
st.session_state['reset_canvas'] = True |
|
|
|
|
|
def make_canvas_dict(canvas_color, brush, paint_mode, _reset_state): |
|
canvas_dict = dict( |
|
fill_color=canvas_color, |
|
stroke_color=canvas_color, |
|
background_color="#FFFFFF", |
|
background_image=st.session_state['initial_image'] if 'initial_image' in st.session_state else None, |
|
stroke_width=brush, |
|
initial_drawing={'version': '4.4.0', 'objects': []} if _reset_state else None, |
|
update_streamlit=True, |
|
height=512, |
|
width=512, |
|
drawing_mode=paint_mode, |
|
key="canvas", |
|
) |
|
return canvas_dict |
|
|
|
def make_prompt_row(): |
|
col_0_0, col_0_1 = st.columns(2) |
|
with col_0_0: |
|
st.text_input(label="Positive prompt", value="a photograph of a room, interior design, 4k, high resolution", key='positive_prompt') |
|
with col_0_1: |
|
st.text_input(label="Negative prompt", value="lowres, watermark, banner, logo, watermark, contactinfo, text, deformed, blurry, blur, out of focus, out of frame, surreal, ugly", key='negative_prompt') |
|
|
|
def make_sidebar(): |
|
with st.sidebar: |
|
input_image = st.file_uploader("", type=["png", "jpg"], key='input_image', on_change=on_upload) |
|
generation_mode = st.selectbox("Generation mode", ["Re-generate objects", |
|
"Segmentation conditioning", |
|
"Inpainting"], on_change=on_change_radio) |
|
|
|
|
|
if generation_mode == "Segmentation conditioning": |
|
paint_mode = st.sidebar.selectbox("Painting mode", ("freedraw", "polygon")) |
|
if paint_mode == "freedraw": |
|
brush = st.slider("Stroke width", 5, 140, 100, key='slider_seg') |
|
else: |
|
brush = 5 |
|
|
|
category_chooser = st.sidebar.selectbox("Filter on category", list( |
|
COLOR_MAPPING_CATEGORY.keys()), index=0, key='category_chooser') |
|
|
|
chosen_colors = list(COLOR_MAPPING_CATEGORY[category_chooser].keys()) |
|
|
|
color_chooser = st.sidebar.selectbox( |
|
"Choose a color", chosen_colors, index=0, format_func=map_colors, key='color_chooser' |
|
) |
|
|
|
elif generation_mode == "Re-generate objects": |
|
color_chooser = "rgba(0, 0, 0, 0.0)" |
|
paint_mode = 'freedraw' |
|
brush = 0 |
|
|
|
else: |
|
paint_mode = st.sidebar.selectbox("Painting mode", ("freedraw", "polygon")) |
|
if paint_mode == "freedraw": |
|
brush = st.slider("Stroke width", 5, 140, 100, key='slider_seg') |
|
else: |
|
brush = 5 |
|
|
|
color_chooser = "#000000" |
|
return input_image, generation_mode, brush, color_chooser, paint_mode |
|
|
|
|
|
def make_output_image(): |
|
if 'output_image' in st.session_state: |
|
output_image = st.session_state['output_image'] |
|
if isinstance(output_image, np.ndarray): |
|
output_image = Image.fromarray(output_image) |
|
|
|
if isinstance(output_image, Image.Image): |
|
output_image = output_image.resize((512, 512)) |
|
else: |
|
output_image = Image.new('RGB', (512, 512), (255, 255, 255)) |
|
|
|
st.write("#### Output image") |
|
st.image(output_image, width=512) |
|
if st.button("Move to input image"): |
|
move_image('output_image', 'initial_image', remove_state=True, rerun=True) |
|
|
|
def make_editing_canvas(canvas_color, brush, _reset_state, generation_mode, paint_mode): |
|
st.write("#### Input image") |
|
canvas_dict = make_canvas_dict( |
|
canvas_color=canvas_color, |
|
paint_mode=paint_mode, |
|
brush=brush, |
|
_reset_state=_reset_state |
|
) |
|
if generation_mode == "Segmentation conditioning": |
|
canvas = st_canvas( |
|
**canvas_dict, |
|
) |
|
|
|
if st.button("generate image", key='generate_button'): |
|
image = get_image() |
|
print("Preparing image segmentation") |
|
real_seg = segment_image(Image.fromarray(image)) |
|
mask, seg = preprocess_seg_mask(canvas, real_seg) |
|
|
|
with st.spinner(text="Generating image"): |
|
print("Making image") |
|
result_image = make_image_controlnet(image=image, |
|
mask_image=mask, |
|
controlnet_conditioning_image=seg, |
|
positive_prompt=st.session_state['positive_prompt'], |
|
negative_prompt=st.session_state['negative_prompt'], |
|
seed=random.randint(0, 100000) |
|
) |
|
if isinstance(result_image, np.ndarray): |
|
result_image = Image.fromarray(result_image) |
|
st.session_state['output_image'] = result_image |
|
|
|
|
|
elif generation_mode == "Re-generate objects": |
|
canvas = st_canvas( |
|
**canvas_dict, |
|
) |
|
if 'seg' not in st.session_state: |
|
with st.spinner(text="Preparing image segmentation"): |
|
image = get_image() |
|
real_seg = np.array(segment_image(Image.fromarray(image))) |
|
st.session_state['seg'] = real_seg |
|
|
|
if 'unique_colors' not in st.session_state: |
|
real_seg = st.session_state['seg'] |
|
unique_colors = np.unique(real_seg.reshape(-1, real_seg.shape[2]), axis=0) |
|
unique_colors = [tuple(color) for color in unique_colors] |
|
st.session_state['unique_colors'] = unique_colors |
|
|
|
with st.expander("Explanation", expanded=True): |
|
st.write("This mode allows you to choose which objects you want to re-generate in the image. " |
|
"Use the selection dropdown to add or remove objects. If you are ready, press the generate button" |
|
" to generate the image, which can take up to 30 seconds. If you want to improve the generated image, click" |
|
" the 'move image to input' button." |
|
) |
|
|
|
chosen_colors = st.multiselect( |
|
label="Choose which concepts you want to regenerate in the image", |
|
options=st.session_state['unique_colors'], |
|
key='chosen_colors', |
|
default=st.session_state['unique_colors'], |
|
format_func=map_colors_rgb, |
|
) |
|
|
|
if st.button("generate image", key='generate_button'): |
|
image = get_image() |
|
print(chosen_colors) |
|
|
|
segmentation = st.session_state['seg'] |
|
mask = np.zeros_like(segmentation) |
|
for color in chosen_colors: |
|
|
|
mask[np.where((segmentation == color).all(axis=2))] = 1 |
|
|
|
with st.spinner(text="Generating image"): |
|
result_image = make_image_controlnet(image=image, |
|
mask_image=mask, |
|
controlnet_conditioning_image=segmentation, |
|
positive_prompt=st.session_state['positive_prompt'], |
|
negative_prompt=st.session_state['negative_prompt'], |
|
seed=random.randint(0, 100000) |
|
) |
|
if isinstance(result_image, np.ndarray): |
|
result_image = Image.fromarray(result_image) |
|
st.session_state['output_image'] = result_image |
|
|
|
elif generation_mode == "Inpainting": |
|
image = get_image() |
|
|
|
canvas = st_canvas( |
|
**canvas_dict, |
|
) |
|
|
|
if st.button("generate images", key='generate_button'): |
|
canvas_mask = canvas.image_data |
|
if not isinstance(canvas_mask, np.ndarray): |
|
canvas_mask = np.array(canvas_mask) |
|
mask = get_mask(canvas_mask) |
|
|
|
with st.spinner(text="Generating new images"): |
|
print("Making image") |
|
result_image = make_inpainting(positive_prompt=st.session_state['positive_prompt'], |
|
image=Image.fromarray(image), |
|
mask_image=mask, |
|
negative_prompt=st.session_state['negative_prompt'], |
|
) |
|
if isinstance(result_image, np.ndarray): |
|
result_image = Image.fromarray(result_image) |
|
st.session_state['output_image'] = result_image |
|
|
|
def main(): |
|
|
|
st.write("## Controlnet sprint - interior design", unsafe_allow_html=True) |
|
|
|
input_image, generation_mode, brush, color_chooser, paint_mode = make_sidebar() |
|
|
|
|
|
if not ('initial_image' in st.session_state and st.session_state['initial_image'] is not None): |
|
st.success("Upload an image to start") |
|
st.write("Welcome to the interior design controlnet demo! " |
|
"You can start by uploading a picture of your room, after which you will see " |
|
"a good variety of options to edit your current room to generate the room of your dreams! " |
|
"You can choose between inpainting, segmentation conditioning and re-generating objects, which " |
|
"use our custom trained controlnet model." |
|
) |
|
with st.expander("Useful information", expanded=True): |
|
st.write("### About the dataset") |
|
st.write("To make this demo as good as possible, our team spend a lot of time training a custom model. " |
|
"We used the LAION5B dataset to build our custom dataset, which contains 130k images of 15 types of rooms " |
|
"in almost 30 design styles. After fetching all these images, we started adding metadata such as " |
|
"captions (from the BLIP captioning model) and segmentation maps (from the HuggingFace UperNetForSemanticSegmentation model). " |
|
) |
|
st.write("For the gathering and inference of the metadata we used the Fondant framework (https://github.com/ml6team/fondant) made by ML6 (https://www.ml6.eu/), which is an open source " |
|
"data centric framework for data preparation. The pipeline used for training this controlnet will soon be available as an " |
|
"example pipeline within Fondant and can be easily adapted for building your own dataset." |
|
) |
|
st.write("### About the model") |
|
st.write( |
|
"These were then used to train the controlnet model to generate quality interior design images by using " |
|
"the segmentation maps and prompts as conditioning information for the model. " |
|
"By training on segmentation maps, the enduser has a very finegrained control over which objects they " |
|
"want to place in their room. " |
|
"The resulting model is then used in a community pipeline that supports image2image and inpainting, " |
|
"so the user can keep elements of their room and change specific parts of the image." |
|
"" |
|
) |
|
|
|
st.write("### Trivia") |
|
st.write("The first time someone uses the demo after startup, the models still need to be loaded into memory. " |
|
"After this initial load, the model is cached as a resource and can be used for all the users. " |
|
"To avoid simultaneous requests, we have implemented a queueing mechanism that ensures that only one " |
|
"user accesses the model at a time (similar to the Gradio framework).\n" |
|
) |
|
st.write("To enable the features in the demo, we calculate the underlying segmentation maps and categories that " |
|
"are present in the image. This allows us to hide some of the manual work for the user, and " |
|
"by doing this, the users don't need to make a segmentation map in an external tool. Everything needed can be done within this demo." |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
st.write("### Testing images") |
|
st.write("If you don't have any pictures close, you can use one of these images to test the model:") |
|
|
|
st.session_state['example_image_0'] = Image.open("content/example_0.png") |
|
st.session_state['example_image_1'] = Image.open("content/example_1.jpg") |
|
|
|
col_im_0, col_im_1 = st.columns(2) |
|
|
|
with col_im_0: |
|
st.image(st.session_state['example_image_0'], caption="Example image 1", use_column_width=True) |
|
if st.button("Use example 1"): |
|
move_image('example_image_0', 'initial_image', remove_state=True, rerun=True) |
|
with col_im_1: |
|
st.image(st.session_state['example_image_1'], caption="Example image 2", use_column_width=True) |
|
if st.button("Use example 2"): |
|
move_image('example_image_1', 'initial_image', remove_state=True, rerun=True) |
|
|
|
st.write("## Generated examples") |
|
col_ex_0, col_ex_1 = st.columns(2) |
|
with col_ex_0: |
|
st.image(Image.open("content/output_1.png"), caption="Generated example, regenerating certain objects in the room", use_column_width=True) |
|
st.image(Image.open("content/regen_example.png"), caption="Generated example, regenerating certain objects in the room", use_column_width=True) |
|
with col_ex_1: |
|
st.image(Image.open("content/output_0.png"), caption="Generated example, regenerating certain objects in the room", use_column_width=True) |
|
|
|
else: |
|
make_prompt_row() |
|
|
|
_reset_state = check_reset_state() |
|
|
|
if generation_mode == "Inpainting": |
|
make_inpainting_explanation() |
|
elif generation_mode == "Segmentation conditioning": |
|
make_segmentation_explanation() |
|
elif generation_mode == "Re-generate objects": |
|
make_regeneration_explanation() |
|
|
|
col1, col2 = st.columns(2) |
|
with col1: |
|
make_editing_canvas(canvas_color=color_chooser, |
|
brush=brush, |
|
_reset_state=_reset_state, |
|
generation_mode=generation_mode, |
|
paint_mode=paint_mode |
|
) |
|
|
|
with col2: |
|
make_output_image() |
|
|
|
if __name__ == "__main__": |
|
main() |