Tonic commited on
Commit
05effe6
·
verified ·
1 Parent(s): 0d5ff62

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -4
app.py CHANGED
@@ -27,11 +27,10 @@ def generate_text(usertitle, content, temperature, max_length, N=3):
27
  # 'content': content
28
  # }
29
  input_text = f"[[[title:]]] {usertitle}\n[[[content:]]]{content}\n\n"
30
- inputs = tokenizer.apply_chat_template(input_text, return_tensors='pt').cuda()
31
  attention_mask = torch.ones(inputs['input_ids'].shape, dtype=torch.long, device='cuda')
32
  generated_sequences = model.generate(inputs['input_ids'], attention_mask=attention_mask, temperature=temperature, max_length=max_length, pad_token_id=tokenizer.eos_token_id, num_return_sequences=N, do_sample=True)
33
- decoded_sequences = [tokenizer.decode(g) for g in generated_sequences]#.strip().split(tokenizer.eos_token)[0]
34
-
35
  def score(sequence):
36
  inputs = rm_tokenizer(sequence, return_tensors='pt', padding=True, truncation=True, max_length=512).to('cuda')
37
  inputs = {k: v.to('cuda') for k, v in inputs.items()}
@@ -42,7 +41,7 @@ def generate_text(usertitle, content, temperature, max_length, N=3):
42
  logits = outputs.logits
43
  print("Logits shape:", logits.shape)
44
  print("Logits contents:", logits)
45
- return logits[0]#[0].item()
46
 
47
  best_sequence = max(decoded_sequences, key=score)
48
 
 
27
  # 'content': content
28
  # }
29
  input_text = f"[[[title:]]] {usertitle}\n[[[content:]]]{content}\n\n"
30
+ inputs = tokenizer(input_text, return_tensors='pt').to('cuda')
31
  attention_mask = torch.ones(inputs['input_ids'].shape, dtype=torch.long, device='cuda')
32
  generated_sequences = model.generate(inputs['input_ids'], attention_mask=attention_mask, temperature=temperature, max_length=max_length, pad_token_id=tokenizer.eos_token_id, num_return_sequences=N, do_sample=True)
33
+ decoded_sequences = [tokenizer.decode(g) for g in generated_sequences]
 
34
  def score(sequence):
35
  inputs = rm_tokenizer(sequence, return_tensors='pt', padding=True, truncation=True, max_length=512).to('cuda')
36
  inputs = {k: v.to('cuda') for k, v in inputs.items()}
 
41
  logits = outputs.logits
42
  print("Logits shape:", logits.shape)
43
  print("Logits contents:", logits)
44
+ return logits[0]
45
 
46
  best_sequence = max(decoded_sequences, key=score)
47