Spaces:
Runtime error
Runtime error
File size: 17,820 Bytes
b5c7f8d 2c91306 b5c7f8d 7cb9b75 2c91306 b5c7f8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
import argparse
import cv2
import time
import os
import shutil
from pathlib import Path
import gradio as gr
from PIL import Image
import numpy as np
from io import BytesIO
import os
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline
from datasets import load_dataset
from PIL import Image
import re
source_img = gr.Image(source="upload", type="filepath", label="init_img | 512*512 px")
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto")
doc_path = os.path.expanduser('~\Documents')
visions_path = os.path.expanduser('~\Documents\\visions of chaos')
import subprocess
import random
parser = argparse.ArgumentParser()
#inpaint
parser.add_argument("--mask", type=str, help="thickness of the mask for seamless inpainting",choices=["thinnest", "thin", "medium", "thick", "thickest"],default="medium")
parser.add_argument("--input",type=str,nargs="?",default="source_img",help="input image",)
parser.add_argument("--indir2",type=str,nargs="?",default="tmp360/tiled_image/",help="dir containing image-mask pairs (`example.png` and `example_mask.png`)",)
parser.add_argument("--outdir2",type=str,nargs="?",default="tmp360/original_image2/",help="temp dir to write results to",)
parser.add_argument("--steps2",type=int,default=50,help="number of ddim sampling steps",)
parser.add_argument("--indir3",type=str,nargs="?",default="tmp360/tiled2_image2/",help="dir containing image-mask pairs (`example.png` and `example_mask.png`)",)
parser.add_argument("--outdir3",type=str,nargs="?",default="outputs/txt2seamlessimg-samples/",help="dir to write results to",)
parser.add_argument("--steps3",type=int,default=50,help="number of ddim sampling steps",)
##first pass of inpainting
import argparse, os, sys, glob
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm
import numpy as np
import torch
from main import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
def make_batch(image, mask, device):
image = np.array(Image.open(image).convert("RGB"))
image = image.astype(np.float32)/255.0
image = image[None].transpose(0,3,1,2)
image = torch.from_numpy(image)
mask = np.array(Image.open(mask).convert("L"))
mask = mask.astype(np.float32)/255.0
mask = mask[None,None]
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = torch.from_numpy(mask)
masked_image = (1-mask)*image
batch = {"image": image, "mask": mask, "masked_image": masked_image}
for k in batch:
batch[k] = batch[k].to(device=device)
batch[k] = batch[k]*2.0-1.0
return batch
if __name__ == "__main__":
opt = parser.parse_args()
inputimg = opt.input
destination = 'tmp360/original_image/example1.png'
#shutil.copy(inputimg, destination)
from PIL import Image
import PIL
img = Image.open(inputimg) # image extension *.png,*.jpg
new_width = 512
new_height = 512
img = img.resize((new_width, new_height), PIL.Image.LANCZOS)
img.save('tmp360/original_image/example.png')
'''p = subprocess.Popen(['mkdir', 'tmp360'])
p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])'''
# masks = opt.mask
# thinnest = r'seamless/thinnest/1st_mask.png'
# thin = r'seamless/thin/1st_mask.png'
# medium = r'seamless/medium/1st_mask.png'
# thick = r'seamless/thick/1st_mask.png'
# thickest = r'seamless/thickest/1st_mask.png'
#
# if masks == thinnest:
# '''p = subprocess.Popen(['mkdir', 'tmp360'])
# p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
# p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
# p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])'''
# print('temporary directories made')
# print('copying',opt.mask ,'mask to dir')
# shutil.copy('C:/deepdream-test/stable/stable-diffusion-2/seamless/medium/1st_mask.png', 'C:/deepdream-test/stable/stable-diffusion-2/tmp360/tiled_image/example_mask.png')
# print('thinnest mask copied')
# elif masks == thin:
# p = subprocess.Popen(['mkdir', 'tmp360'])
# p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
# p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
# p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])
# print('temporary directories made')
# print('copying',opt.mask ,'mask to dir')
# shutil.copy('C:/deepdream-test/stable/stable-diffusion-2/seamless/thin/1st_mask.png', 'C:/deepdream-test/stable/stable-diffusion-2/tmp360/tiled_image/example_mask.png')
# print(opt.mask, 'mask copied')
# elif masks == medium:
# p = subprocess.Popen(['mkdir', 'tmp360'])
# p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
# p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
# p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])
# print('temporary directories made')
# print('copying',opt.mask ,'mask to dir')
# shutil.copy('C:/deepdream-test/stable/stable-diffusion-2/seamless/medium/1st_mask.png', 'C:/deepdream-test/stable/stable-diffusion-2/tmp360/tiled_image/example_mask.png')
# elif masks == thick:
# p = subprocess.Popen(['mkdir', 'tmp360'])
# p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
# p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
# p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])
# print('temporary directories made')
# print('copying',opt.mask ,'mask to dir')
# shutil.copy('C:/deepdream-test/stable/stable-diffusion-2/seamless/thick/1st_mask.png', 'C:/deepdream-test/stable/stable-diffusion-2/tmp360/tiled_image/example_mask.png')
# elif masks == thickest:
# p = subprocess.Popen(['mkdir', 'tmp360'])
# p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
# p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
# p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])
# print('temporary directories made')
# print('copying',opt.mask ,'mask to dir')
# shutil.copy('C:/deepdream-test/stable/stable-diffusion-2/seamless/thickest/1st_mask.png', 'C:/deepdream-test/stable/stable-diffusion-2/tmp360/tiled_image/example_mask.png')
#
# # outpath = opt.outdir
# # sample_path = os.path.join(outpath, "samples")
# output555= "outputs/txt2img-samples/samples/example.png"
"""##move opt.output to temp directory###
source = output555
destination = 'tmp360/original_image/example.png'
shutil.move(source, destination)"""
##tile the image
#p = subprocess.Popen(['mogrify', 'convert', '-virtual-pixel', 'tile', '-filter', 'point', '-set', 'option:distort:viewport', '1024x1024', '-distort', 'SRT', '0', '-path', r'tmp360/tiled2_image', r'tmp360/original_image/example.png'])
#print('image tiled')
#from PIL import Image # import pillow library (can install with "pip install pillow")
#im = Image.open('tmp360/tiled2_image/example.png')
#im = im.crop( (1, 0, 512, 512) ) # previously, image was 826 pixels wide, cropping to 825 pixels wide
#im.save('tmp360/tiled2_image/example.png') # saves the image
# im.show() # opens the image
subprocess.call([r'crop.bat'])
print('image center cropped')
masks1 = sorted(glob.glob(os.path.join(opt.indir2, "*_mask.png")))
images1 = [x.replace("_mask.png", ".png") for x in masks1]
print(f"Found {len(masks1)} inputs.")
config = OmegaConf.load("models/ldm/inpainting_big/config.yaml")
model = instantiate_from_config(config.model)
model.load_state_dict(torch.load("C:\deepdream-test\stable\stable-diffusion-2\models\ldm\inpainting_big\last.ckpt")["state_dict"],
strict=False)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
sampler = DDIMSampler(model)
os.makedirs(opt.outdir2, exist_ok=True)
with torch.no_grad():
with model.ema_scope():
for image, mask in tqdm(zip(images1, masks1)):
outpath3 = os.path.join(opt.outdir2, os.path.split(image)[1])
batch = make_batch(image, mask, device=device)
# encode masked image and concat downsampled mask
c = model.cond_stage_model.encode(batch["masked_image"])
cc = torch.nn.functional.interpolate(batch["mask"],
size=c.shape[-2:])
c = torch.cat((c, cc), dim=1)
shape = (c.shape[1]-1,)+c.shape[2:]
samples_ddim, _ = sampler.sample(S=opt.steps2,
conditioning=c,
batch_size=c.shape[0],
shape=shape,
verbose=False)
x_samples_ddim = model.decode_first_stage(samples_ddim)
image = torch.clamp((batch["image"]+1.0)/2.0,
min=0.0, max=1.0)
mask = torch.clamp((batch["mask"]+1.0)/2.0,
min=0.0, max=1.0)
predicted_image = torch.clamp((x_samples_ddim+1.0)/2.0,
min=0.0, max=1.0)
inpainted = (1-mask)*image+mask*predicted_image
inpainted = inpainted.cpu().numpy().transpose(0,2,3,1)[0]*255
Image.fromarray(inpainted.astype(np.uint8)).save(outpath3)
if __name__ == "__main__":
#opt = parser.parse_args()
#inputimg = outpath3
#destination = 'tmp360/original_image2/example.png'
#shutil.copy(inputimg, destination)
'''p = subprocess.Popen(['mkdir', 'tmp360'])
p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])'''
# masks = opt.mask
# thinnest = r'seamless/thinnest/1st_mask.png'
# thin = r'seamless/thin/1st_mask.png'
# medium = r'seamless/medium/1st_mask.png'
# thick = r'seamless/thick/1st_mask.png'
# thickest = r'seamless/thickest/1st_mask.png'
#
# if masks == thinnest:
# '''p = subprocess.Popen(['mkdir', 'tmp360'])
# p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
# p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
# p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])'''
# print('temporary directories made')
# print('copying',opt.mask ,'mask to dir')
# shutil.copy('C:/deepdream-test/stable/stable-diffusion-2/seamless/example_mask.png', 'C:/deepdream-test/stable/stable-diffusion-2/tmp360/tiled_image/example_mask.png')
# print('thinnest mask copied')
# elif masks == thin:
# p = subprocess.Popen(['mkdir', 'tmp360'])
# p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
# p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
# p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])
# print('temporary directories made')
# print('copying',opt.mask ,'mask to dir')
# shutil.copy('C:/deepdream-test/stable/stable-diffusion-2/seamless/thin/1st_mask.png', 'C:/deepdream-test/stable/stable-diffusion-2/tmp360/tiled_image/example_mask.png')
# print(opt.mask, 'mask copied')
# elif masks == medium:
# p = subprocess.Popen(['mkdir', 'tmp360'])
# p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
# p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
# p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])
# print('temporary directories made')
# print('copying',opt.mask ,'mask to dir')
# shutil.copy('C:/deepdream-test/stable/stable-diffusion-2/seamless/medium/1st_mask.png', 'C:/deepdream-test/stable/stable-diffusion-2/tmp360/tiled_image/example_mask.png')
# elif masks == thick:
# p = subprocess.Popen(['mkdir', 'tmp360'])
# p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
# p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
# p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])
# print('temporary directories made')
# print('copying',opt.mask ,'mask to dir')
# shutil.copy('C:/deepdream-test/stable/stable-diffusion-2/seamless/thick/1st_mask.png', 'C:/deepdream-test/stable/stable-diffusion-2/tmp360/tiled_image/example_mask.png')
# elif masks == thickest:
# p = subprocess.Popen(['mkdir', 'tmp360'])
# p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
# p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
# p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])
# print('temporary directories made')
# print('copying',opt.mask ,'mask to dir')
# shutil.copy('C:/deepdream-test/stable/stable-diffusion-2/seamless/thickest/1st_mask.png', 'C:/deepdream-test/stable/stable-diffusion-2/tmp360/tiled_image/example_mask.png')
# outpath = opt.outdir
# sample_path = os.path.join(outpath, "samples")
#output555= "outputs/txt2img-samples/samples/example.png"
"""##move opt.output to temp directory###
source = output555
destination = 'tmp360/original_image/example.png'
shutil.move(source, destination)"""
##tile the image
#p = subprocess.Popen(['mogrify', 'convert', '-virtual-pixel', 'tile', '-filter', 'point', '-set', 'option:distort:viewport', '1024x1024', '-distort', 'SRT', '0', '-path', r'tmp360/tiled2_image', r'tmp360/original_image/example.png'])
#print('image tiled')
#from PIL import Image # import pillow library (can install with "pip install pillow")
#im = Image.open('tmp360/tiled2_image/example.png')
#im = im.crop( (1, 0, 512, 512) ) # previously, image was 826 pixels wide, cropping to 825 pixels wide
#im.save('tmp360/tiled2_image/example.png') # saves the image
# im.show() # opens the image
subprocess.call([r'2ndpass.bat'])
print('image center cropped')
masks = sorted(glob.glob(os.path.join(opt.indir3, "*_mask.png")))
images = [x.replace("_mask.png", ".png") for x in masks]
print(f"Found {len(masks)} inputs.")
config = OmegaConf.load("models/ldm/inpainting_big/config.yaml")
model = instantiate_from_config(config.model)
model.load_state_dict(torch.load("C:\deepdream-test\stable\stable-diffusion-2\models\ldm\inpainting_big\last.ckpt")["state_dict"],
strict=False)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
sampler = DDIMSampler(model)
outpath4 = opt.outdir3
base_count = len(os.listdir(outpath4))
os.makedirs(opt.outdir3, exist_ok=True)
with torch.no_grad():
with model.ema_scope():
for image, mask in tqdm(zip(images, masks)):
outpath4 = os.path.join(opt.outdir3, os.path.split(opt.outdir3)[1])
batch = make_batch(image, mask, device=device)
# encode masked image and concat downsampled mask
c = model.cond_stage_model.encode(batch["masked_image"])
cc = torch.nn.functional.interpolate(batch["mask"],
size=c.shape[-2:])
c = torch.cat((c, cc), dim=1)
shape = (c.shape[1]-1,)+c.shape[2:]
samples_ddim, _ = sampler.sample(S=opt.steps2,
conditioning=c,
batch_size=c.shape[0],
shape=shape,
verbose=False)
x_samples_ddim = model.decode_first_stage(samples_ddim)
image = torch.clamp((batch["image"]+1.0)/2.0,
min=0.0, max=1.0)
mask = torch.clamp((batch["mask"]+1.0)/2.0,
min=0.0, max=1.0)
predicted_image = torch.clamp((x_samples_ddim+1.0)/2.0,
min=0.0, max=1.0)
inpainted = (1-mask)*image+mask*predicted_image
inpainted = inpainted.cpu().numpy().transpose(0,2,3,1)[0]*255
#Image.fromarray(inpainted.astype(np.uint8)).save(outpath4)
Image.fromarray(inpainted.astype(np.uint8)).save(os.path.join(outpath4, f"{base_count:05}.png"))
base_count += 1
title="make seamless latent diffusion from Stable Diffusion repo"
description="make seamless Stable Diffusion example"
gr.Interface(fn=infer, inputs=[source_img], outputs=gallery,title=title,description=description).launch(enable_queue=True) |