Spaces:
Build error
Build error
File size: 3,404 Bytes
af771af 0fe9ba3 af771af 13f24b5 b2de2a8 af771af bd1ea7f af771af bd1ea7f af771af 13f24b5 611c38a af771af 611c38a 13f24b5 af771af 13f24b5 af771af 13f24b5 0fe9ba3 af771af bd1ea7f af771af bd1ea7f 13f24b5 bd1ea7f 13f24b5 af771af b2de2a8 13f24b5 af771af 611c38a cf58338 af771af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
import gradio as gr
from PIL import Image,ImageDraw, ImageFont, ImageOps
import sys
import torch
from util import Detection, load_font
import os
if os.environ.get('FACE_MODEL') is not None:
face_model = os.environ.get('FACE_MODEL')
age_model = os.environ.get('AGE_MODEL')
torch.hub.download_url_to_file(face_model, 'face_model.pt')
torch.hub.download_url_to_file(age_model, 'age_model.pt')
sys.path.append("./")
sys.path.append("./yolov5")
from yolov5.detect import predict, load_yolo_model
# Load Models
model, stride, names, pt, jit, onnx, engine = load_yolo_model("face_model.pt", imgsz=[320,320])
age_model_ts = torch.jit.load("age_model.pt")
roboto_font = load_font(height_px=18)
def run_yolo(img0):
#img_path = img
#img0 = Image.open(img_path).convert("RGB")
img0 = ImageOps.contain(img0, (720,720))
img0 = ImageOps.exif_transpose(img0)
draw = ImageDraw.Draw(img0)
predictions = predict(age_model_ts, model,
stride, imgsz=[320, 320],
conf_thres=0.5, iou_thres=0.45,
source=img0
)
detections : list[Detection] = []
for k, bbox in enumerate(predictions):
det = Detection(
(k+1),
bbox["xmin"],
bbox["ymin"],
bbox["xmax"],
bbox["ymax"],
bbox["conf"],
bbox["class"],
bbox["class"],
img0.size
)
detections.append(det)
draw.rectangle(((det.xmin, det.ymin), (det.xmax, det.ymax)), fill=None, outline=(255,255,255))
draw.rectangle(((det.xmin, det.ymin - 20), (det.xmax, det.ymin)), fill=(255,255,255))
draw.text((det.xmin, det.ymin - 20), det.class_name, fill=(0,0,0), font=roboto_font)
# img0.save("img.jpg")
return img0
#run_yolo("D:\\Download\\IMG_20220803_153335c.jpg")
#sys.exit(1)
inputs = gr.inputs.Image(type='pil', label="Input Image")
outputs = gr.outputs.Image(type="pil", label="Output Image")
title = "AgeGuesser"
description = "Guess the age of a person from a facial image!"
article = """<p>A fully automated system based on YOLOv5 and EfficientNet to perform face detection and age estimation in real-time.</p>
<p><b>Links</b></p>
<ul>
<li>
<a href='https://link.springer.com/chapter/10.1007/978-3-030-89131-2_25'>Springer</a>
</li>
<li>
<a href='https://www.researchgate.net/publication/355777953_Real-Time_Age_Estimation_from_Facial_Images_Using_YOLO_and_EfficientNet'>Paper</a>
</li>
<li>
<a href='https://github.com/ai-hazard/AgeGuesser-train'>Github</a>
</li>
</ul>
<p>Credits to my dear colleague <a href='https://www.linkedin.com/in/nicola-marvulli-904270136/'>Dott. Nicola Marvulli</a>, we've developed AgeGuesser together as part of two university exams. (Computer Vision + Deep Learning)</p>
<p>Credits to my dear professors and the <a href='https://sites.google.com/site/cilabuniba/'>CILAB</a> research group</p>
<ul>
<li>
<a href='https://sites.google.com/site/cilabuniba/people/giovanna-castellano'>Prof. Giovanna Castellano</a>
</li>
<li>
<a href='https://sites.google.com/view/gennaro-vessio/home-page'>Prof. Gennaro Vessio</a>
</li>
</ul>
"""
examples = [['images/1.jpg'], ['images/2.jpg'], ['images/3.jpg'], ['images/4.jpg'], ['images/5.jpg'], ]
gr.Interface(run_yolo, inputs, outputs, title=title, description=description, article=article, examples=examples, theme="huggingface").launch(enable_queue=True) |