Spaces:
Running
Running
File size: 1,790 Bytes
a1873d6 b547fbf fa4ee23 a0bd560 b547fbf fa4ee23 cd7cf5e a8eee9b cd7cf5e a8eee9b cd7cf5e b547fbf a0bd560 08d4b40 b547fbf a0bd560 b547fbf a0bd560 b547fbf a0bd560 b547fbf 96523cc b547fbf a0bd560 b547fbf 08d4b40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import os
import spaces # on top as CUDA needs to be initialized after `spaces`
try:
import detectron2
except ImportError:
import os
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
try:
from segment_anything import build_sam, SamPredictor
except ImportError:
import os
os.system('pip install git+https://github.com/facebookresearch/segment-anything.git')
from segment_anything import build_sam, SamPredictor
try:
import grounded_dino
except ImportError:
import os
os.system('pip install transformers')
os.system('pip install git+https://github.com/IDEA-Research/Grounded-Segment-Anything.git')
import gradio as gr
import json
import numpy as np
from sam_utils import grounded_segmentation, create_yellow_background_with_insects
from yolo_utils import yolo_processimage
from detectron_utils import detectron_process_image
from gsl_utils import gsl_process_image
@spaces.GPU
def process_image(image, include_json):
detectron_result = detectron_process_image(image)
yolo_result = yolo_processimage(image)
insectsam_result = create_yellow_background_with_insects(image)
gsl_result = gsl_process_image(image)
return insectsam_result, yolo_result, detectron_result, gsl_result
examples = [
["imgs/demo.jpg"],
["imgs/demo1.jpg"],
["imgs/demo2.jpg"],
["imgs/demo3.jpg"],
["imgs/demo4.jpg"],
["imgs/demo5.jpg"],
]
gr.Interface(
fn=process_image,
inputs=[gr.Image(type="pil")],
outputs=[
gr.Image(label='InsectSAM', type="numpy"),
gr.Image(label='Yolov8', type="numpy"),
gr.Image(label='Detectron', type="numpy"),
gr.Image(label='GSL', type="numpy")
],
title="Insect Model Zoo ππ¬",
examples=examples
).launch() |