File size: 8,251 Bytes
b547fbf
96805b8
b547fbf
 
 
 
 
 
 
 
 
 
 
 
 
96805b8
b547fbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96805b8
b547fbf
 
 
 
96805b8
b547fbf
 
 
 
 
 
 
 
 
96805b8
b547fbf
 
 
 
 
 
 
96805b8
b547fbf
 
 
 
 
 
 
 
96805b8
b547fbf
 
 
 
 
 
 
 
 
 
 
 
96805b8
b547fbf
 
 
 
 
 
 
 
 
96805b8
b547fbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96805b8
b547fbf
 
 
 
 
 
96805b8
b547fbf
 
 
 
96805b8
b547fbf
 
 
 
 
 
 
 
 
 
 
 
 
 
96805b8
b547fbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96805b8
b547fbf
 
 
 
 
 
91b50f5
b547fbf
 
 
 
 
 
 
 
 
 
96805b8
b547fbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96805b8
b547fbf
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os

import random
from dataclasses import dataclass
from typing import Any, List, Dict, Optional, Union, Tuple
import cv2
import torch
import requests
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
from transformers import AutoModelForMaskGeneration, AutoProcessor, pipeline
import gradio as gr
import json


@dataclass
class BoundingBox:
    xmin: int
    ymin: int
    xmax: int
    ymax: int

    @property
    def xyxy(self) -> List[float]:
        return [self.xmin, self.ymin, self.xmax, self.ymax]
@dataclass
class DetectionResult:
    score: float
    label: str
    box: BoundingBox
    mask: Optional[np.ndarray] = None

    @classmethod
    def from_dict(cls, detection_dict: Dict) -> 'DetectionResult':
        return cls(
            score=detection_dict['score'],
            label=detection_dict['label'],
            box=BoundingBox(
                xmin=detection_dict['box']['xmin'],
                ymin=detection_dict['box']['ymin'],
                xmax=detection_dict['box']['xmax'],
                ymax=detection_dict['box']['ymax']
            )
        )

def annotate(image: Union[Image.Image, np.ndarray], detection_results: List[DetectionResult], include_bboxes: bool = True) -> np.ndarray:
    image_cv2 = np.array(image) if isinstance(image, Image.Image) else image
    image_cv2 = cv2.cvtColor(image_cv2, cv2.COLOR_RGB2BGR)

    for detection in detection_results:
        label = detection.label
        score = detection.score
        box = detection.box
        mask = detection.mask

        if include_bboxes:
            color = np.random.randint(0, 256, size=3).tolist()
            cv2.rectangle(image_cv2, (box.xmin, box.ymin),
                          (box.xmax, box.ymax), color, 2)
            cv2.putText(image_cv2, f'{label}: {score:.2f}', (box.xmin, box.ymin - 10),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)

    return cv2.cvtColor(image_cv2, cv2.COLOR_BGR2RGB)


def plot_detections(image: Union[Image.Image, np.ndarray], detections: List[DetectionResult], include_bboxes: bool = True) -> np.ndarray:
    annotated_image = annotate(image, detections, include_bboxes)
    return annotated_image


def load_image(image: Union[str, Image.Image]) -> Image.Image:
    if isinstance(image, str) and image.startswith("http"):
        image = Image.open(requests.get(image, stream=True).raw).convert("RGB")
    elif isinstance(image, str):
        image = Image.open(image).convert("RGB")
    else:
        image = image.convert("RGB")
    return image


def get_boxes(detection_results: List[DetectionResult]) -> List[List[List[float]]]:
    boxes = []
    for result in detection_results:
        xyxy = result.box.xyxy
        boxes.append(xyxy)
    return [boxes]


def mask_to_polygon(mask: np.ndarray) -> np.ndarray:
    contours, _ = cv2.findContours(
        mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    if len(contours) == 0:
        return np.array([])
    largest_contour = max(contours, key=cv2.contourArea)
    return largest_contour


def refine_masks(masks: torch.BoolTensor, polygon_refinement: bool = False) -> List[np.ndarray]:
    masks = masks.cpu().float().permute(0, 2, 3, 1).mean(
        axis=-1).numpy().astype(np.uint8)
    masks = (masks > 0).astype(np.uint8)
    if polygon_refinement:
        for idx, mask in enumerate(masks):
            shape = mask.shape
            polygon = mask_to_polygon(mask)
            masks[idx] = cv2.fillPoly(
                np.zeros(shape, dtype=np.uint8), [polygon], 1)
    return list(masks)


def detect(image: Image.Image, labels: List[str], threshold: float = 0.3, detector_id: Optional[str] = None) -> List[Dict[str, Any]]:
    detector_id = detector_id if detector_id else "IDEA-Research/grounding-dino-base"
    object_detector = pipeline(
        model=detector_id, task="zero-shot-object-detection", device="cpu")
    labels = [label if label.endswith(".") else label+"." for label in labels]
    results = object_detector(
        image, candidate_labels=labels, threshold=threshold)
    return [DetectionResult.from_dict(result) for result in results]


def segment(image: Image.Image, detection_results: List[DetectionResult], polygon_refinement: bool = False, segmenter_id: Optional[str] = None) -> List[DetectionResult]:
    segmenter_id = segmenter_id if segmenter_id else "martintmv/InsectSAM"
    segmentator = AutoModelForMaskGeneration.from_pretrained(
        segmenter_id).to("cpu")
    processor = AutoProcessor.from_pretrained(segmenter_id)
    boxes = get_boxes(detection_results)
    inputs = processor(images=image, input_boxes=boxes,
                       return_tensors="pt").to("cpu")
    outputs = segmentator(**inputs)
    masks = processor.post_process_masks(
        masks=outputs.pred_masks, original_sizes=inputs.original_sizes, reshaped_input_sizes=inputs.reshaped_input_sizes)[0]
    masks = refine_masks(masks, polygon_refinement)
    for detection_result, mask in zip(detection_results, masks):
        detection_result.mask = mask
    return detection_results


def grounded_segmentation(image: Union[Image.Image, str], labels: List[str], threshold: float = 0.3, polygon_refinement: bool = False, detector_id: Optional[str] = None, segmenter_id: Optional[str] = None) -> Tuple[np.ndarray, List[DetectionResult]]:
    image = load_image(image)
    detections = detect(image, labels, threshold, detector_id)
    detections = segment(image, detections, polygon_refinement, segmenter_id)
    return np.array(image), detections


def mask_to_min_max(mask: np.ndarray) -> Tuple[int, int, int, int]:
    y, x = np.where(mask)
    return x.min(), y.min(), x.max(), y.max()


def extract_and_paste_insect(original_image: np.ndarray, detection: DetectionResult, background: np.ndarray) -> None:
    mask = detection.mask
    xmin, ymin, xmax, ymax = mask_to_min_max(mask)
    insect_crop = original_image[ymin:ymax, xmin:xmax]
    mask_crop = mask[ymin:ymax, xmin:xmax]

    insect = cv2.bitwise_and(insect_crop, insect_crop, mask=mask_crop)

    x_offset, y_offset = xmin, ymin
    x_end, y_end = x_offset + insect.shape[1], y_offset + insect.shape[0]

    insect_area = background[y_offset:y_end, x_offset:x_end]
    insect_area[mask_crop == 1] = insect[mask_crop == 1]


def create_yellow_background_with_insects(image: np.ndarray) -> np.ndarray:
    labels = ["insect"]

    original_image, detections = grounded_segmentation(
        image, labels, threshold=0.3, polygon_refinement=True)

    yellow_background = np.full(
        (original_image.shape[0], original_image.shape[1], 3), (0, 255, 255), dtype=np.uint8)  # BGR for yellow
    for detection in detections:
        if detection.mask is not None:
            extract_and_paste_insect(
                original_image, detection, yellow_background)
    # Convert back to RGB to match Gradio's expected input format
    yellow_background = cv2.cvtColor(yellow_background, cv2.COLOR_BGR2RGB)
    return yellow_background


def run_length_encoding(mask):
    pixels = mask.flatten()
    rle = []
    last_val = 0
    count = 0
    for pixel in pixels:
        if pixel == last_val:
            count += 1
        else:
            if count > 0:
                rle.append(count)
            count = 1
            last_val = pixel
    if count > 0:
        rle.append(count)
    return rle


def detections_to_json(detections):
    detections_list = []
    for detection in detections:
        detection_dict = {
            "score": detection.score,
            "label": detection.label,
            "box": {
                "xmin": detection.box.xmin,
                "ymin": detection.box.ymin,
                "xmax": detection.box.xmax
            },
            "mask": run_length_encoding(detection.mask) if detection.mask is not None else None
        }
        detections_list.append(detection_dict)
    return detections_list


def crop_bounding_boxes_with_yellow_background(image: np.ndarray, yellow_background: np.ndarray, detections: List[DetectionResult]) -> List[np.ndarray]:
    crops = []
    for detection in detections:
        xmin, ymin, xmax, ymax = detection.box.xyxy
        crop = yellow_background[ymin:ymax, xmin:xmax]
        crops.append(crop)
    return crops