Spaces:
Running
on
Zero
Running
on
Zero
<!--Copyright 2023 The HuggingFace Team. All rights reserved. | |
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with | |
the License. You may obtain a copy of the License at | |
http://www.apache.org/licenses/LICENSE-2.0 | |
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on | |
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the | |
specific language governing permissions and limitations under the License. | |
--> | |
# Text-guided image-inpainting | |
[[open-in-colab]] | |
The [`StableDiffusionInpaintPipeline`] allows you to edit specific parts of an image by providing a mask and a text prompt. It uses a version of Stable Diffusion, like [`runwayml/stable-diffusion-inpainting`](https://huggingface.co/runwayml/stable-diffusion-inpainting) specifically trained for inpainting tasks. | |
Get started by loading an instance of the [`StableDiffusionInpaintPipeline`]: | |
```python | |
import PIL | |
import requests | |
import torch | |
from io import BytesIO | |
from diffusers import StableDiffusionInpaintPipeline | |
pipeline = StableDiffusionInpaintPipeline.from_pretrained( | |
"runwayml/stable-diffusion-inpainting", | |
torch_dtype=torch.float16, | |
) | |
pipeline = pipeline.to("cuda") | |
``` | |
Download an image and a mask of a dog which you'll eventually replace: | |
```python | |
def download_image(url): | |
response = requests.get(url) | |
return PIL.Image.open(BytesIO(response.content)).convert("RGB") | |
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" | |
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" | |
init_image = download_image(img_url).resize((512, 512)) | |
mask_image = download_image(mask_url).resize((512, 512)) | |
``` | |
Now you can create a prompt to replace the mask with something else: | |
```python | |
prompt = "Face of a yellow cat, high resolution, sitting on a park bench" | |
image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0] | |
``` | |
`image` | `mask_image` | `prompt` | output | | |
:-------------------------:|:-------------------------:|:-------------------------:|-------------------------:| | |
<img src="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" alt="drawing" width="250"/> | <img src="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" alt="drawing" width="250"/> | ***Face of a yellow cat, high resolution, sitting on a park bench*** | <img src="https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/in_paint/yellow_cat_sitting_on_a_park_bench.png" alt="drawing" width="250"/> | | |
<Tip warning={true}> | |
A previous experimental implementation of inpainting used a different, lower-quality process. To ensure backwards compatibility, loading a pretrained pipeline that doesn't contain the new model will still apply the old inpainting method. | |
</Tip> | |
Check out the Spaces below to try out image inpainting yourself! | |
<iframe | |
src="https://runwayml-stable-diffusion-inpainting.hf.space" | |
frameborder="0" | |
width="850" | |
height="500" | |
></iframe> | |