Spaces:
Running
on
Zero
Running
on
Zero
<!--Copyright 2023 The HuggingFace Team. All rights reserved. | |
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with | |
the License. You may obtain a copy of the License at | |
http://www.apache.org/licenses/LICENSE-2.0 | |
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on | |
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the | |
specific language governing permissions and limitations under the License. | |
--> | |
# Models | |
Diffusers contains pretrained models for popular algorithms and modules for creating the next set of diffusion models. | |
The primary function of these models is to denoise an input sample, by modeling the distribution $p_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t)$. | |
The models are built on the base class ['ModelMixin'] that is a `torch.nn.module` with basic functionality for saving and loading models both locally and from the HuggingFace hub. | |
## ModelMixin | |
[[autodoc]] ModelMixin | |
## UNet2DOutput | |
[[autodoc]] models.unet_2d.UNet2DOutput | |
## UNet2DModel | |
[[autodoc]] UNet2DModel | |
## UNet1DOutput | |
[[autodoc]] models.unet_1d.UNet1DOutput | |
## UNet1DModel | |
[[autodoc]] UNet1DModel | |
## UNet2DConditionOutput | |
[[autodoc]] models.unet_2d_condition.UNet2DConditionOutput | |
## UNet2DConditionModel | |
[[autodoc]] UNet2DConditionModel | |
## UNet3DConditionOutput | |
[[autodoc]] models.unet_3d_condition.UNet3DConditionOutput | |
## UNet3DConditionModel | |
[[autodoc]] UNet3DConditionModel | |
## DecoderOutput | |
[[autodoc]] models.vae.DecoderOutput | |
## VQEncoderOutput | |
[[autodoc]] models.vq_model.VQEncoderOutput | |
## VQModel | |
[[autodoc]] VQModel | |
## AutoencoderKLOutput | |
[[autodoc]] models.autoencoder_kl.AutoencoderKLOutput | |
## AutoencoderKL | |
[[autodoc]] AutoencoderKL | |
## Transformer2DModel | |
[[autodoc]] Transformer2DModel | |
## Transformer2DModelOutput | |
[[autodoc]] models.transformer_2d.Transformer2DModelOutput | |
## TransformerTemporalModel | |
[[autodoc]] models.transformer_temporal.TransformerTemporalModel | |
## Transformer2DModelOutput | |
[[autodoc]] models.transformer_temporal.TransformerTemporalModelOutput | |
## PriorTransformer | |
[[autodoc]] models.prior_transformer.PriorTransformer | |
## PriorTransformerOutput | |
[[autodoc]] models.prior_transformer.PriorTransformerOutput | |
## ControlNetOutput | |
[[autodoc]] models.controlnet.ControlNetOutput | |
## ControlNetModel | |
[[autodoc]] ControlNetModel | |
## FlaxModelMixin | |
[[autodoc]] FlaxModelMixin | |
## FlaxUNet2DConditionOutput | |
[[autodoc]] models.unet_2d_condition_flax.FlaxUNet2DConditionOutput | |
## FlaxUNet2DConditionModel | |
[[autodoc]] FlaxUNet2DConditionModel | |
## FlaxDecoderOutput | |
[[autodoc]] models.vae_flax.FlaxDecoderOutput | |
## FlaxAutoencoderKLOutput | |
[[autodoc]] models.vae_flax.FlaxAutoencoderKLOutput | |
## FlaxAutoencoderKL | |
[[autodoc]] FlaxAutoencoderKL | |
## FlaxControlNetOutput | |
[[autodoc]] models.controlnet_flax.FlaxControlNetOutput | |
## FlaxControlNetModel | |
[[autodoc]] FlaxControlNetModel | |