Spaces:
Sleeping
Sleeping
import gc | |
import traceback | |
from queue import Queue | |
from threading import Thread | |
import torch | |
import transformers | |
from transformers import is_torch_xpu_available | |
import modules.shared as shared | |
class _StopEverythingStoppingCriteria(transformers.StoppingCriteria): | |
def __init__(self): | |
transformers.StoppingCriteria.__init__(self) | |
def __call__(self, input_ids: torch.LongTensor, _scores: torch.FloatTensor) -> bool: | |
return shared.stop_everything | |
class Stream(transformers.StoppingCriteria): | |
def __init__(self, callback_func=None): | |
self.callback_func = callback_func | |
def __call__(self, input_ids, scores) -> bool: | |
if self.callback_func is not None: | |
self.callback_func(input_ids[0]) | |
return False | |
class Iteratorize: | |
""" | |
Transforms a function that takes a callback | |
into a lazy iterator (generator). | |
Adapted from: https://stackoverflow.com/a/9969000 | |
""" | |
def __init__(self, func, args=None, kwargs=None, callback=None): | |
self.mfunc = func | |
self.c_callback = callback | |
self.q = Queue() | |
self.sentinel = object() | |
self.args = args or [] | |
self.kwargs = kwargs or {} | |
self.stop_now = False | |
def _callback(val): | |
if self.stop_now or shared.stop_everything: | |
raise ValueError | |
self.q.put(val) | |
def gentask(): | |
try: | |
ret = self.mfunc(callback=_callback, *args, **self.kwargs) | |
except ValueError: | |
pass | |
except: | |
traceback.print_exc() | |
pass | |
clear_torch_cache() | |
self.q.put(self.sentinel) | |
if self.c_callback: | |
self.c_callback(ret) | |
self.thread = Thread(target=gentask) | |
self.thread.start() | |
def __iter__(self): | |
return self | |
def __next__(self): | |
obj = self.q.get(True, None) | |
if obj is self.sentinel: | |
raise StopIteration | |
else: | |
return obj | |
def __del__(self): | |
clear_torch_cache() | |
def __enter__(self): | |
return self | |
def __exit__(self, exc_type, exc_val, exc_tb): | |
self.stop_now = True | |
clear_torch_cache() | |
def clear_torch_cache(): | |
gc.collect() | |
if not shared.args.cpu: | |
if is_torch_xpu_available(): | |
torch.xpu.empty_cache() | |
else: | |
torch.cuda.empty_cache() | |