Spaces:
Runtime error
Runtime error
File size: 3,411 Bytes
e173a84 848a638 e173a84 a24abaa e173a84 a24abaa e173a84 4a3a204 e173a84 bb5ec6d 95cdb44 bb5ec6d e173a84 242b67f 4a3a204 e173a84 bb5ec6d e173a84 2a6db88 e173a84 4a3a204 848a638 4a3a204 e173a84 a24abaa 3076001 928efab dae33bc 928efab dae33bc 928efab dae33bc d79a08c 928efab e173a84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
import io
import requests
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
from PIL import Image
import gradio as gr
import uform
from datetime import datetime
model_multi = uform.get_model('unum-cloud/uform-vl-multilingual')
embeddings = np.load('tensors/embeddings.npy')
embeddings = torch.tensor(embeddings)
#features = np.load('multilingual-image-search/tensors/features.npy')
#features = torch.tensor(features)
img_df = pd.read_csv('image_data.csv')
def url2img(url, resize = False, fix_height = 150):
data = requests.get(url, allow_redirects = True).content
img = Image.open(io.BytesIO(data))
if resize:
img.thumbnail([fix_height, fix_height], Image.LANCZOS)
return img
def find_topk(text):
print('text', text)
top_k = 20
text_data = model_multi.preprocess_text(text)
text_features, text_embedding = model_multi.encode_text(text_data, return_features=True)
print('Got features', datetime.now().strftime("%H:%M:%S"))
sims = F.cosine_similarity(text_embedding, embeddings)
vals, inds = sims.topk(top_k)
top_k_urls = img_df.iloc[inds]['photo_image_url'].values
print('Got top_k_urls', top_k_urls)
print(datetime.now().strftime("%H:%M:%S"))
return top_k_urls
# def rerank(text_features, text_data):
# # craet joint embeddings & get scores
# joint_embedding = model_multi.encode_multimodal(
# image_features=image_features,
# text_features=text_features,
# attention_mask=text_data['attention_mask']
# )
# score = model_multi.get_matching_scores(joint_embedding)
# # argmax to get top N
# return
#demo = gr.Interface(find_topk, inputs = 'text', outputs = 'image')
print('version', gr.__version__)
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown('# Enter a prompt in one of the supported languages.')
with gr.Row():
with gr.Column():
gr.Markdown(
'||||||\n'
'|:-------: |:---: |:-------: |:---: | :--- |\n'
'|__English__| # |__French__ | # |__Russian__|\n'
'|__German__ | # |__Italian__ | # |__Chinese (Simplified)__|\n'
'|__Spanish__| # |__Japanese__| # |__Korean__|\n'
'|__Turkish__| # |__Polish__ | # |.|\n')
with gr.Column():
prompt_box = gr.Textbox(label = 'Enter your prompt', lines = 3, container = True)
btn_search = gr.Button("Find images")
with gr.Row():
gr.Examples(['a girl wandering alone in the forest',
'морозное утро в городе',
'카메라를 바라보는 강아지 새끼',
'ein Schloss, das zwischen modernen Gebäuden hervorlugt',
'un couple sirotant un café au bord de la rivière',
'una banda de música actuando en un gran espacio al aire libre',
'秋の静かな霧の庭園'
], inputs=[prompt_box])
gallery = gr.Gallery().style(grid = [5], height="auto")
btn_search.click(find_topk, inputs = prompt_box, outputs = gallery)
if __name__ == "__main__":
demo.launch() |